首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13348篇
  免费   127篇
  国内免费   211篇
系统科学   237篇
丛书文集   727篇
教育与普及   563篇
理论与方法论   41篇
现状及发展   1229篇
研究方法   1556篇
综合类   9314篇
自然研究   19篇
  2018年   26篇
  2017年   39篇
  2016年   33篇
  2015年   34篇
  2014年   70篇
  2013年   59篇
  2012年   794篇
  2011年   1018篇
  2010年   280篇
  2009年   124篇
  2008年   967篇
  2007年   1010篇
  2006年   1043篇
  2005年   1091篇
  2004年   863篇
  2003年   817篇
  2002年   714篇
  2001年   595篇
  2000年   893篇
  1999年   320篇
  1998年   72篇
  1997年   41篇
  1996年   40篇
  1995年   26篇
  1994年   47篇
  1993年   51篇
  1992年   35篇
  1991年   60篇
  1990年   58篇
  1989年   62篇
  1988年   51篇
  1987年   51篇
  1986年   74篇
  1985年   64篇
  1984年   48篇
  1983年   51篇
  1982年   63篇
  1981年   45篇
  1980年   26篇
  1979年   39篇
  1971年   33篇
  1970年   62篇
  1966年   27篇
  1959年   211篇
  1958年   367篇
  1957年   259篇
  1956年   225篇
  1955年   232篇
  1954年   253篇
  1948年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Zürner A  Kirstein J  Döblinger M  Bräuchle C  Bein T 《Nature》2007,450(7170):705-708
Periodic mesoporous materials formed through the cooperative self-assembly of surfactants and framework building blocks can assume a variety of structures, and their widely tuneable properties make them attractive hosts for numerous applications. Because the molecular movement in the pore system is the most important and defining characteristic of porous materials, it is of interest to learn about this behaviour as a function of local structure. Generally, individual fluorescent dye molecules can be used as molecular beacons with which to explore the structure of--and the dynamics within--these porous hosts, and single-molecule fluorescence techniques provide detailed insights into the dynamics of various processes, ranging from biology to heterogeneous catalysis. However, optical microscopy methods cannot directly image the mesoporous structure of the host system accommodating the diffusing molecules, whereas transmission electron microscopy provides detailed images of the porous structure, but no dynamic information. It has therefore not been possible to 'see' how molecules diffuse in a real nanoscale pore structure. Here we present a combination of electron microscopic mapping and optical single-molecule tracking experiments to reveal how a single luminescent dye molecule travels through linear or strongly curved sections of a mesoporous channel system. In our approach we directly correlate porous structures detected by transmission electron microscopy with the diffusion dynamics of single molecules detected by optical microscopy. This opens up new ways of understanding the interactions of host and guest.  相似文献   
142.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.  相似文献   
143.
Identification of Tim4 as a phosphatidylserine receptor   总被引:1,自引:0,他引:1  
Miyanishi M  Tada K  Koike M  Uchiyama Y  Kitamura T  Nagata S 《Nature》2007,450(7168):435-439
In programmed cell death, a large number of cells undergo apoptosis, and are engulfed by macrophages to avoid the release of noxious materials from the dying cells. In definitive erythropoiesis, nuclei are expelled from erythroid precursor cells and are engulfed by macrophages. Phosphatidylserine is exposed on the surface of apoptotic cells and on the nuclei expelled from erythroid precursor cells; it works as an 'eat me' signal for phagocytes. Phosphatidylserine is also expressed on the surface of exosomes involved in intercellular signalling. Here we established a library of hamster monoclonal antibodies against mouse peritoneal macrophages, and found an antibody that strongly inhibited the phosphatidylserine-dependent engulfment of apoptotic cells. The antigen recognized by the antibody was identified by expression cloning as a type I transmembrane protein called Tim4 (T-cell immunoglobulin- and mucin-domain-containing molecule; also known as Timd4). Tim4 was expressed in Mac1+ cells in various mouse tissues, including spleen, lymph nodes and fetal liver. Tim4 bound apoptotic cells by recognizing phosphatidylserine via its immunoglobulin domain. The expression of Tim4 in fibroblasts enhanced their ability to engulf apoptotic cells. When the anti-Tim4 monoclonal antibody was administered into mice, the engulfment of apoptotic cells by thymic macrophages was significantly blocked, and the mice developed autoantibodies. Among the other Tim family members, Tim1, but neither Tim2 nor Tim3, specifically bound phosphatidylserine. Tim1- or Tim4-expressing Ba/F3 B cells were bound by exosomes via phosphatidylserine, and exosomes stimulated the interaction between Tim1 and Tim4. These results indicate that Tim4 and Tim1 are phosphatidylserine receptors for the engulfment of apoptotic cells, and may also be involved in intercellular signalling in which exosomes are involved.  相似文献   
144.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   
145.
Schr?dinger's cat is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory and in many quantum information processing tasks, including quantum computation, quantum teleportation and precision measurements. Recently, optical Schr?dinger 'kittens' were prepared; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schr?dinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schr?dinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.  相似文献   
146.
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.  相似文献   
147.
The mammalian olfactory system mediates various responses, including aversive behaviours to spoiled foods and fear responses to predator odours. In the olfactory bulb, each glomerulus represents a single species of odorant receptor. Because a single odorant can interact with several different receptor species, the odour information received in the olfactory epithelium is converted to a topographical map of multiple glomeruli activated in distinct areas in the olfactory bulb. To study how the odour map is interpreted in the brain, we generated mutant mice in which olfactory sensory neurons in a specific area of the olfactory epithelium are ablated by targeted expression of the diphtheria toxin gene. Here we show that, in dorsal-zone-depleted mice, the dorsal domain of the olfactory bulb was devoid of glomerular structures, although second-order neurons were present in the vacant areas. The mutant mice lacked innate responses to aversive odorants, even though they were capable of detecting them and could be conditioned for aversion with the remaining glomeruli. These results indicate that, in mice, aversive information is received in the olfactory bulb by separate sets of glomeruli, those dedicated for innate and those for learned responses.  相似文献   
148.
Engulfment and subsequent degradation of apoptotic cells is an essential step that occurs throughout life in all multicellular organisms. ELMO/Dock180/Rac proteins are a conserved signalling module for promoting the internalization of apoptotic cell corpses; ELMO and Dock180 function together as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac, and thereby regulate the phagocyte actin cytoskeleton during engulfment. However, the receptor(s) upstream of the ELMO/Dock180/Rac module are still unknown. Here we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a receptor upstream of ELMO and as a receptor that can bind phosphatidylserine on apoptotic cells. BAI1 is a seven-transmembrane protein belonging to the adhesion-type G-protein-coupled receptor family, with an extended extracellular region and no known ligands. We show that BAI1 functions as an engulfment receptor in both the recognition and subsequent internalization of apoptotic cells. Through multiple lines of investigation, we identify phosphatidylserine, a key 'eat-me' signal exposed on apoptotic cells, as a ligand for BAI1. The thrombospondin type 1 repeats within the extracellular region of BAI1 mediate direct binding to phosphatidylserine. As with intracellular signalling, BAI1 forms a trimeric complex with ELMO and Dock180, and functional studies suggest that BAI1 cooperates with ELMO/Dock180/Rac to promote maximal engulfment of apoptotic cells. Last, decreased BAI1 expression or interference with BAI1 function inhibits the engulfment of apoptotic targets ex vivo and in vivo. Thus, BAI1 is a phosphatidylserine recognition receptor that can directly recruit a Rac-GEF complex to mediate the uptake of apoptotic cells.  相似文献   
149.
PTC124 targets genetic disorders caused by nonsense mutations   总被引:1,自引:0,他引:1  
Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号