首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8962篇
  免费   102篇
  国内免费   225篇
系统科学   226篇
丛书文集   416篇
教育与普及   373篇
理论与方法论   37篇
现状及发展   678篇
研究方法   1046篇
综合类   6508篇
自然研究   5篇
  2022年   29篇
  2021年   35篇
  2019年   28篇
  2018年   32篇
  2017年   34篇
  2016年   32篇
  2015年   36篇
  2014年   91篇
  2013年   75篇
  2012年   542篇
  2011年   667篇
  2010年   247篇
  2009年   157篇
  2008年   673篇
  2007年   660篇
  2006年   717篇
  2005年   740篇
  2004年   552篇
  2003年   508篇
  2002年   423篇
  2001年   374篇
  2000年   533篇
  1999年   224篇
  1998年   79篇
  1997年   51篇
  1996年   52篇
  1995年   24篇
  1994年   49篇
  1993年   42篇
  1992年   47篇
  1991年   49篇
  1990年   37篇
  1989年   48篇
  1988年   28篇
  1987年   31篇
  1986年   37篇
  1985年   36篇
  1984年   38篇
  1983年   34篇
  1982年   41篇
  1981年   33篇
  1979年   22篇
  1970年   29篇
  1959年   117篇
  1958年   221篇
  1957年   155篇
  1956年   122篇
  1955年   129篇
  1954年   147篇
  1948年   34篇
排序方式: 共有9289条查询结果,搜索用时 17 毫秒
131.
132.
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.  相似文献   
133.
Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.  相似文献   
134.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.  相似文献   
135.
Opisthorchis viverrini-related cholangiocarcinoma (CCA), a fatal bile duct cancer, is a major public health concern in areas endemic for this parasite. We report here whole-exome sequencing of eight O. viverrini-related tumors and matched normal tissue. We identified and validated 206 somatic mutations in 187 genes using Sanger sequencing and selected 15 genes for mutation prevalence screening in an additional 46 individuals with CCA (cases). In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8-3.7% of cases. These included inactivating mutations in MLL3 (in 14.8% of cases), ROBO2 (9.3%), RNF43 (9.3%) and PEG3 (5.6%), and activating mutations in the GNAS oncogene (9.3%). These genes have functions that can be broadly grouped into three biological classes: (i) deactivation of histone modifiers, (ii) activation of G protein signaling and (iii) loss of genome stability. This study provides insight into the mutational landscape contributing to O. viverrini-related CCA.  相似文献   
136.
RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.  相似文献   
137.
Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10(-7). In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10(-11)) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10(-11)). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10(-7)) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10(-7)); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.  相似文献   
138.
139.
Genome-wide association studies (GWAS) are a standard approach for studying the genetics of natural variation. A major concern in GWAS is the need to account for the complicated dependence structure of the data, both between loci as well as between individuals. Mixed models have emerged as a general and flexible approach for correcting for population structure in GWAS. Here, we extend this linear mixed-model approach to carry out GWAS of correlated phenotypes, deriving a fully parameterized multi-trait mixed model (MTMM) that considers both the within-trait and between-trait variance components simultaneously for multiple traits. We apply this to data from a human cohort for correlated blood lipid traits from the Northern Finland Birth Cohort 1966 and show greatly increased power to detect pleiotropic loci that affect more than one blood lipid trait. We also apply this approach to an Arabidopsis thaliana data set for flowering measurements in two different locations, identifying loci whose effect depends on the environment.  相似文献   
140.
Enucleated oocytes have the distinctive ability to reprogram somatic nuclei back to totipotency. Here, we investigate genome-scale DNA methylation patterns after nuclear transfer and compare them to the dynamics at fertilization. We identify specific targets for DNA demethylation after nuclear transfer, such as germline-associated promoters, as well as unique limitations that include certain repetitive element classes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号