排序方式: 共有16条查询结果,搜索用时 4 毫秒
11.
给出一种结合张量特征和孪生支持向量机的群体行为识别算法,以提高对视频中群体行为识别的准确率.首先通过群成员关节点骨架的姿态结构信息和群成员的社会网络信息描述群体在每一帧中的行为,并采用张量形式表示;然后使用多路非线性特征映射分解张量核,并利用粒子群优化张量核孪生支持向量机的模型参数;最后结合张量特征和孪生支持向量机实现视频中的群体行为识别.CAD2数据集和自建数据集上的实验结果表明,张量特征能够有效地表示群体行为,相比经典算法,所提算法能有效提高群体行为识别的准确率. 相似文献
12.
研究基于最小二乘小波孪生支持向量机(least squares wavelet twin support vector machines,简称LS-WTSVM)的遥感多光谱影像云检测.首先根据云在不同波段中大气的辐射特点,结合Landsat7 ETM+影像数据的光谱特性获得云像元的光谱特征,再通过提取每个图像块的灰度共生矩阵得到相应像元的纹理结构特征,根据像元的光谱特性和纹理结构特征构造特征向量,最后利用最小二乘小波孪生支持向量机多分类算法进行Landsat7 ETM+影像像元的云检测,实现不同类型云区的多分类识别.仿真实验结果表明,该算法能准确地检测出多光谱影像中的厚云和薄云. 相似文献
13.
针对无人机平台获取的高分辨率可见光松树图像,提出一种结合深度卷积神经网络和Adaboost算法的病害松树识别方法,解决传统机器学习方法识别病害松树精确度不高问题.首先利用卷积神经网络训练病害松树模型再利用训练模型将地物中的田地、裸土及黑影等复杂信息剔除掉,提取病害松树、健康松树及黑影区域的颜色和纹理特征,依据提取的特征在剔除地物干扰项后的决策层使用Adaboost分类器进行目标识别.实验结果表明,该方法相较传统的K-means聚类、支持向量机、Adaboost算法、BP神经网络、VGG(visual geometry group)算法等在识别精确度方面有显著提高. 相似文献
14.
利用小波支持向量回归,实现了遥感多光谱图像分辨率的增强。首先采用非下采样Contourlet变换对低分辨率的多光谱图像和高分辨率的全色图像进行多分辨率分解,再利用小波支持向量回归对分解系数进行学习和预测,获得分辨率初步提高的多光谱图像,最后再与传统的插值方法得到的结果进行融合来实现多光谱图像分辨率增强。实验结果表明:此方法借遥感全色图像的辅助获得丰富的高频细节信息,使得分辨率增强结果无论是最小均方误差还是峰值信噪比都要优于仅依靠原图像本身放大的传统方法以及其他的分辨率增强方法。 相似文献
15.
16.
图像篡改最基础的手段便是拼接,为了恢复人们对数字图像的信任,图像拼接检测变得非常重要.论文提出一种基于最小二乘孪生支持向量机的图像拼接检测算法,算法对待测图像进行对偶数复小波变换以获取不同的子带图像,对子带图像提取其马尔科夫状态转移概率矩阵,将该概率矩阵作为拼接特征向量送入最小二乘孪生支持向量机训练以获取预测模型,最后根据该模型来判断待测图像是否经过拼接.在哥伦比亚大学无压缩图像拼接检测评估库和哥伦比亚大学图像拼接检测评估库上分别进行实验,与传统算法做对比,实验结果充分证明论文所提算法具有更高的拼接检测准确率. 相似文献