排序方式: 共有59条查询结果,搜索用时 0 毫秒
11.
讨论了不可约M-矩阵A的最小特征值l(A)的估计问题。得到了,若A,B∈Rn×n是不可约M-矩阵。记B-1=[bij],A-1=[aij],则l(A oB-1)<2 m ax1 i nakkbkk,且存在正对角矩阵D1=d iag(d1,d2,∧,dn),与D2=d iag(d1,d2,∧,dn),使得m in1 i ndim in1 i ndi l(A)m ax1 i ndi1 m i a nxdi. 相似文献
12.
分别给出了非奇异M-矩阵的逆矩阵和非奇异M-矩阵的Hadamard积与非奇异M-矩阵Fan积的最小特征值下界新的估计式;同时给出了非负矩阵Hadamard积的谱半径上界新的估计式;这些估计式都只依赖于矩阵的元素,易于计算.算例表明,这些估计式在一定条件下改进了现有结果. 相似文献
13.
随着H-矩阵在科学与工程计算中的广泛应用,如何判定一个给定矩阵是否为H-矩阵引起了许多研究者的兴趣.本文对一个现有判定H-矩阵的迭代算法进行了修正,得到了一个新的迭代算法.数值算例表明该算法是有效的. 相似文献
14.
本文讨论SAW卷积器在通讯和信号处理中的应用,着重介绍它们在扩频通讯中的作用。文中还对卷积器的噪声作了专门分析,以说明内外噪声源。 相似文献
15.
本文阐述了2-距离空间理论的一些近期进展并提出了几个待进一步研究的有意义的问题。 相似文献
16.
本文讨论了Hilbert空间中的集值非线性补问题和非线性补问題。其主要结论是定理1和定理2。其中定理1给出了在Hilbert空间中集值非线性补问题存在解的一个充分条件。定理2把文〔1〕中的主要结论推广到了一般的Hilbert空间,给出了在Hilbert空间中非线性补问題存在唯一解的充分条件。对于Hilberr空间中的集值非线性补问题和非线性补问題定理1和定理2不但解决了解的存在问题,而且给出了求近似解的一种迭代算法。 相似文献
17.
应用修正矩阵理论和α-型及Brauer-型矩阵特征值包含区域,获得随机矩阵非1特征值新的α-型和Brauer-型特征值包含区域及其非奇异的充分条件.最后用数值例子验证所得的包含区域比一些已有的包含区域更精确,且能用其更好地估计随机矩阵的谱隙. 相似文献
18.
利用严格对角占优M-矩阵A的逆矩阵A-1的非主对角元素上界的估计式,给出了|A(-1)|∞上界估计式的改进.证明了所得估计式改进了几个现有文献的结果,并用数值算例进行了说明. 相似文献
19.
20.
偶数阶张量Z-特征值的定位在多元多项式的正定性判定中具有重要应用.本文研究4阶张量的Z-特征值定位问题,在一定条件下得到了4阶张量Z-特征值的一个新的包含集,改进了一些现有结果,并得到了4阶实对称张量正定性判定的一个易于验证的充分条件.最后通过数值例子说明其在4阶多项式的正定性判定中的应用. 相似文献