排序方式: 共有75条查询结果,搜索用时 10 毫秒
61.
62.
通过表面接枝的方法,在室温下用偶联剂(MPS)KH-570对纳米SiO2进行接枝,经引发剂引发甲基丙烯酸甲酯(MMA)发生自由基聚合包覆,并通过TEM和FTIR等测试手段表征粉体有机包覆层的形貌和化学组成结构,应用DSC和TGA等测试方法研究了反应条件对复合粒子结构和性能的影响.为了得到较高的接枝率,用两种不同浓度的偶联剂对纳米SiO2进行预处理,纳米SiO2-MPS复合粒子的接枝率随着偶联剂浓度的增大而提高,且SiO2-MPS-PMMA复合粒子的接枝率和单体的转化率随着引发剂的浓度和单体的浓度的增大而明显提高. 相似文献
63.
利用振动管密度计在298.15K下测定了N,N-二乙基甲酰胺(DEF)分别与苯、甲苯、对二甲苯、间二甲苯、邻二甲苯、乙苯、苯乙烯构成的二元溶液体系的过量摩尔体积(Vm^E),在全部浓度范围内,Vm^E均为负值,│Vm^E(极值)│和│Vm^E(x=0.5)│大致有如下顺序:苯乙烯〉甲苯〉对二甲苯〉苯〉邻二甲苯≈乙苯〉间二苯。实验结果表明DEF分子与芳烃分子之间有相当强的相互作用。 相似文献
64.
Ni-P包覆纳米氧化锆复合粉体的制备及性能研究 总被引:5,自引:0,他引:5
Ni-P包覆纳米氧化锆复合粉体由于其优良的特性,在半导体纳米材料中得到越来越广泛的应用和研究.制取复合粉末有多种方法,其中化学镀法以其操作简单,节省能源而倍受青睐.本文利用化学镀方法,在一步钯催化法条件下,合成了Ni-P包覆纳米氧化锆复合粉体,表征了粉体的结构.初步测试了粉体的磁学性质. 相似文献
65.
66.
氢作为一种清洁的能源引起了人们的普遍重视.实验以产酸克雷伯氏菌(Klebsiella oxytoca)HP1为产氢菌株,以稻草粉为产氢底物,进行同步糖化发酵(Simultaneous Saccharification and Fermentation,SSF)产氢.对影响同步糖化发酵产氢的单因子进行试验,选取对氢产率影响较大的因子:温度、pH、纤维素酶用量等进行L9(34)正交试验.结果表明同步糖化发酵产氢的最佳条件为:温度40℃,pH6.5,纤维素酶用量为20FPAU/g稻草粉,摇床转速100r/min,发酵时间42h.在该条件下的最大氢产率为110.6mL/g稻草粉,稻草粉的氢转化率为22%.进行了10L放大发酵产氢试验,最大氢产率为122.3mL/g稻草粉,氢转化率为24.3%.与分步糖化发酵(Separate Hydrolysis and Fermentation,SHF)产氢相比,氢产率提高34.4%.研究表明,利用同步糖化发酵工艺可以提高生物制氢的产量和得率. 相似文献
67.
选取由CVD预增密至一定密度,再进行树脂浸渍/炭化补充增密至1.85 g/cm3的炭/炭复合材料作摩擦环试样.测试了该试样在一系列刹车速度时的摩擦磨损性能,并对其摩擦面及磨屑进行了SEM观察,对摩擦面进行显微喇曼光谱分析.研究结果表明炭/炭复合材料的摩擦磨损性能随刹车速度的变化而发生显著变化,在10 m/s时出现最高峰,在25 m/s出现亚高峰;磨损量随刹车速度的增加而增加,而氧化磨损在刹车速度为25 m/s时开始大量产生,在28 m/s时达最大值.其摩擦表面形貌、结构及磨屑亦有较大差别.刹车速度从5 m/s升至20 m/s时,摩擦面石墨化度降低,石墨结构向无定型碳结构转变,但在高速时石墨化度反而升高,无定型碳结构又向石墨结构转变. 相似文献
68.
采用硫酸铵沉淀和柱层析 (DEAE-Sepharose F.F., Sephacryl S-200, TSK-DEAE)初步分离纯化了产酸克雷伯氏菌(Klebsiella oxytoca)HP1可溶性氢酶,研究了温度、pH值、电子载体等对氢酶催化放氢活性的影响.研究表明,可溶性氢酶催化放氢的最适温度为30℃,催化放氢的最适pH值为7.5,甲基紫晶(MV)是氢酶催化放氢的最适人工电子载体,氧对氢酶催化活性有较大的抑制作用. 相似文献
69.
以硝酸铜为铜源,凹凸棒石黏土作为载体,采用尿素作矿化剂,通过与凹凸棒石黏土共混水热法制得氧化铜/凹凸棒石黏土复合材料前驱体,高温煅烧后得到凹凸棒石黏土负载的多孔氧化铜材料.通过IR、XRD、SEM以及TG对其结构和形貌进行表征.研究结果表明:所制备的氧化铜/凹凸棒石黏土复合材料对氯酸钾和过氧化氢的分解反应具有较高的催化活性. 相似文献
70.
使用连续称重装置和非连续称重装置对Fe25Cr20Ni合金在H2S-H2气氛中的高温硫化行为进行了研究。结果表明:这种合金的硫化行为遵循抛物线规律,腐蚀产物有3层:最外层(称OL-Ⅱ层)由Fe-Ni-S系统组成;中间层(称OL-Ⅰ层)由Fe-Cr-S系统组成;内硫化层(Subscale)由一些弥散的硫化物相组成,标记实验的结果表明:合金在硫化过程中,腐蚀产物最外两层的生长是由金属离子向外扩散控制,而内硫化层的生长是由分解机理控制。 相似文献