首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  国内免费   8篇
综合类   47篇
  2023年   3篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2011年   3篇
  2010年   3篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
  2001年   3篇
  1999年   3篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
21.
设q为素数p的幂,F_q~n为有限域F_q的n(n≥2)次扩域.熟知k-型高斯正规基当k=1时为Ⅰ型最优正规基,当q=k=2时为Ⅱ型最优正规基.本文证明了k-型高斯正规基生成元的迹函数为-1,确定了2-型高斯正规基的复杂度及其对偶基的生成元与复杂度.  相似文献   
22.
正规基在有限域的许多应用领域中有广泛应用:编码理论、密码学、信号传送等.Z.X.Wan等(Finite Fields and their Applications,2007,13(4):417-417.)给出了Fqn在Fq上的Ⅰ型最优正规基的对偶基的复杂度为:3n-3(q为偶数)或3n-2(q为奇数).这是一类类似于k...  相似文献   
23.
刻画了弱逆半群S上的最大幂等元分离同余和最小群同余,在此基础上,证明了S的群同余格与S的由主元所组成的逆半群I(S)的群同余格完备格同构;进而,证明了I(S)的群同余格是S的同余格的格同态像。  相似文献   
24.
设n,e>1均为正整数,利用初等的方法和技巧,以及Smarandache LCM函数和广义Euler函数的基本性质,讨论e∈{2,3,4,6}或e|φ(n)时,数论函数方程SL(n)=φe(n)的可解性,并给出该方程全部的正整数解.  相似文献   
25.
将零差分平衡函数的定义推广到广义零差分平衡函数(G-ZDB),并利用p分圆陪集构造一类新的广义零差分平衡函数,其中p为质数.  相似文献   
26.
设n为正整数,φ(n)是n的Eu ler函数,对于正整数a和b,如果存在正整数t使得φ(a)=b/t,φ(b)=a/t,则称(t,a,b)是一个t-Eu ler优美数对.用初等而简洁的方法讨论了t-Eu ler优美数对的存在性,并得到了全部的t-Eu ler优美数对只有(t,a,b)=(1,1,1),(2,2α,2α)及(3,2α.3β,2α.3β),其中α,β都是正整数.  相似文献   
27.
为将Lehmer同余式从模素数的平方推广到模任意整数的平方,前人定义了正整数n的广义欧拉函数φ_e(n),其中e为正整数,并完全确定了φ_e(n)(e=3,4,6)的准确计算公式.进一步研究利用初等的方法和技巧给出部分正整数n的φ_5(n)的准确计算公式,由此得到相应的φ_5(n)的奇偶性判别.  相似文献   
28.
设q为素数的方幂,E=Fqn为有限域F=Fq的n次扩张,N={αi=qi|i=0,1,…,n-1}为E在F上的一组正规基,T=(ti,j)为其乘法表,B={βi=βqi|i=0,1,…,n-1}为N的对偶基,H=(hi,j)为其乘法表.文中给出了:a,b∈Fq以及r∈1,…,n-1}使得β=a+bαr的两个充分必要条件,以及在该假设之下乘法表T和H之间的运算关系.  相似文献   
29.
在椭圆曲线公钥密码体制中,计算q元域Fq上椭圆曲线有理点的数目是至关重要的,这里q为素数p的幂.一个公认有效的计算有理点数目的Schoof算法需要用到有限域Fp2的原根.设n是一个正整数,F=Fqn为q元域K=Fq的n次扩张,α是F中的任意元,NF/K(α)是α在K上的范函数.用初等而简洁的方法,得到了α是F的原根的几个充分必要条件,并由此给出了由K的原根求Fq2的原根的一个算法.  相似文献   
30.
设Fq是特征为p的q元有限域.固定Fq的一个非空子集D={x1,…,xn}.熟知标准Reed-Solomon码Cq(Fq,k)的对偶码Cq(Fq,q-k)仍为Reed-Solomon码.对于广义Reed-Solomon码Cq(D,k),给出存在广义Reed-Solomon码Cq(B,n-k),使得Cq(D,k)与Cq(B,n-k)互为对偶码的一个充要条件.并由此构造出一类满足此条件的广义Reed-Solomon码.关键词:Reed-Solomon码;自对偶码;本原元素  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号