首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12378篇
  免费   210篇
  国内免费   136篇
系统科学   742篇
丛书文集   807篇
教育与普及   546篇
理论与方法论   35篇
现状及发展   998篇
研究方法   1323篇
综合类   8262篇
自然研究   11篇
  2022年   22篇
  2017年   106篇
  2016年   124篇
  2015年   117篇
  2014年   184篇
  2013年   54篇
  2012年   667篇
  2011年   840篇
  2010年   250篇
  2009年   58篇
  2008年   755篇
  2007年   825篇
  2006年   990篇
  2005年   986篇
  2004年   766篇
  2003年   730篇
  2002年   659篇
  2001年   541篇
  2000年   775篇
  1999年   267篇
  1998年   70篇
  1997年   39篇
  1996年   41篇
  1995年   54篇
  1994年   59篇
  1993年   88篇
  1992年   51篇
  1991年   72篇
  1990年   48篇
  1989年   63篇
  1988年   45篇
  1987年   54篇
  1986年   70篇
  1985年   68篇
  1984年   61篇
  1983年   58篇
  1982年   65篇
  1981年   46篇
  1980年   26篇
  1979年   32篇
  1971年   34篇
  1970年   61篇
  1966年   21篇
  1959年   206篇
  1958年   369篇
  1957年   272篇
  1956年   221篇
  1955年   220篇
  1954年   250篇
  1948年   76篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
141.
Robinson CV  Sali A  Baumeister W 《Nature》2007,450(7172):973-982
Proteomic studies have yielded detailed lists of the proteins present in a cell. Comparatively little is known, however, about how these proteins interact and are spatially arranged within the 'functional modules' of the cell: that is, the 'molecular sociology' of the cell. This gap is now being bridged by using emerging experimental techniques, such as mass spectrometry of complexes and single-particle cryo-electron microscopy, to complement traditional biochemical and biophysical methods. With the development of integrative computational methods to exploit the data obtained, such hybrid approaches will uncover the molecular architectures, and perhaps even atomic models, of many protein complexes. With these structures in hand, researchers will be poised to use cryo-electron tomography to view protein complexes in action within cells, providing unprecedented insights into protein-interaction networks.  相似文献   
142.
Witze A 《Nature》2007,450(7172):927
  相似文献   
143.
South-polar features on Venus similar to those near the north pole   总被引:1,自引:0,他引:1  
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.  相似文献   
144.
145.
146.
147.
Sato T  Mushiake S  Kato Y  Sato K  Sato M  Takeda N  Ozono K  Miki K  Kubo Y  Tsuji A  Harada R  Harada A 《Nature》2007,448(7151):366-369
A number of proteins are known to be involved in apical/basolateral transport of proteins in polarized epithelial cells. The small GTP-binding protein Rab8 was thought to regulate basolateral transport in polarized kidney epithelial cells through the AP1B-complex-mediated pathway. However, the role of Rab8 (Rab8A) in cell polarity in vivo remains unknown. Here we show that Rab8 is responsible for the localization of apical proteins in intestinal epithelial cells. We found that apical peptidases and transporters localized to lysosomes in the small intestine of Rab8-deficient mice. Their mislocalization and degradation in lysosomes led to a marked reduction in the absorption rate of nutrients in the small intestine, and ultimately to death. Ultrastructurally, a shortening of apical microvilli, an increased number of enlarged lysosomes, and microvillus inclusions in the enterocytes were also observed. One microvillus inclusion disease patient who shows an identical phenotype to Rab8-deficient mice expresses a reduced amount of RAB8 (RAB8A; NM_005370). Our results demonstrate that Rab8 is necessary for the proper localization of apical proteins and the absorption and digestion of various nutrients in the small intestine.  相似文献   
148.
A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K(ATP) channels. Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production. UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.  相似文献   
149.
The CDKN2b-CDKN2a locus on chromosome 9p21 in human (chromosome 4 in mouse) is frequently lost in cancer. The locus encodes three cell cycle inhibitory proteins: p15INK4b encoded by CDKN2b, p16INK4a encoded by CDKN2a and p14ARF (p19Arf in mice) encoded by an alternative reading frame of CDKN2a (ref. 1). Whereas the tumour suppressor functions for p16INK4a and p14ARF have been firmly established, the role of p15INK4b remains ambiguous. However, many 9p21 deletions also remove CDKN2b, so we hypothesized a synergistic effect of the combined deficiency for p15INK4b, p14ARF and p16INK4a. Here we report that mice deficient for all three open reading frames (Cdkn2ab-/-) are more tumour-prone and develop a wider spectrum of tumours than Cdkn2a mutant mice, with a preponderance of skin tumours and soft tissue sarcomas (for example, mesothelioma) frequently composed of mixed cell types and often showing biphasic differentiation. Cdkn2ab-/- mouse embryonic fibroblasts (MEFs) are substantially more sensitive to oncogenic transformation than Cdkn2a mutant MEFs. Under conditions of stress, p15Ink4b protein levels are significantly elevated in MEFs deficient for p16Ink4a. Our data indicate that p15Ink4b can fulfil a critical backup function for p16Ink4a and provide an explanation for the frequent loss of the complete CDKN2b-CDKN2a locus in human tumours.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号