首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   73篇
  国内免费   85篇
系统科学   34篇
丛书文集   2篇
教育与普及   9篇
现状及发展   19篇
研究方法   62篇
综合类   484篇
  2024年   4篇
  2023年   6篇
  2022年   8篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   16篇
  2017年   12篇
  2016年   9篇
  2015年   9篇
  2014年   25篇
  2013年   23篇
  2012年   42篇
  2011年   48篇
  2010年   18篇
  2009年   10篇
  2008年   44篇
  2007年   66篇
  2006年   31篇
  2005年   42篇
  2004年   43篇
  2003年   35篇
  2002年   28篇
  2001年   20篇
  2000年   27篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有610条查询结果,搜索用时 296 毫秒
301.
The configuration of the tundish for a two-strand horizontal continuous caster was designed and optimized through water modeling. Three designs of the tundish were studied: the original tundish without any flow control devices, the tundish with a turbulence inhibitor at the bottom, and the tundish with an inlet launder and an inclined dam. The residence time, the location and size of the dead zone, and the fluid field pattern were investigated. At the same time, the asymmetry flow field and wavy inlet jet in the horizontal tundish were observed and the reasons for them were discussed. The results indicate that the tundish with an inlet launder and an inclined dam is the best of the three designs.  相似文献   
302.
A novel technique of flue gas desulphurization (FGD) using industrial sodium sulfide as absorbent is described to remove SO2 in flue gas. The FGD byproduct in this novel technique is sodium thiosulfate (Na2S2O3·5H2O,Hypo) which can be used as chemical raw material. Optimal operating parameters about this technique have been determined. In order to enhance productive efficiency of sodium thiosulfate,EDTA disodium additive is added into absorption solution to prevent oxidation of sodium thiosulfate. Its optimal concentration is 0.02 wt. %. The pH value of absorption solution is set in the range of 5~6.5. Experimental results show that SO2 removal efficiency averagely reach 98.72 %. The highest productive efficiency of sodium thiosulfate reaches 83.24 %.The sodium thiosulfate formed during FGD can be separated from saturated absorbent by filtration,concentration and crystallization. The filtrate after separating sodium thiosulfate will be reused as SO2 absorbent by replenishing some fresh sodium sulfide.  相似文献   
303.
The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30 μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa·m1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.  相似文献   
304.
The anodic dissolution process of a crack tip at 2024-T351 aluminium alloy (AA2024-T351) was determined by means of scanning Kelvin probe (SKP). Wedge-open loading (WOL) specimens were immersed in a 3.5wt% NaCl solution. After various durations of immersion, the Volta potential distributions around the crack were measured by SKP and the surface morphologies were observed by scanning electron microscopy (SEM). It is found that there is a nonuniform distribution of Volta potential around the crack. Before immersion, the Volta potential at crack tip is more negative than that in other regions. However, after immersion, a converse result occurs with the most positive Volta potential measured at the crack tip. SEM observations demonstrate that the noticeable positive shift of Volta potential results from the formation of corrosion products which deposit around the crack tip. Energy-dispersive spectrometry (EDS) analysis shows that the corrosion products are mainly Al oxide and Cu-rich particles. These observations implicate that the applied stress contributes to the preferential anodic dissolution of the crack tip and the redistribution of Cu.  相似文献   
305.
Open-circuit potential measurements and Raman spectroscopy were used to investigate the reverse crevice corrosion phenomenon and its corresponding corrosion products. With the aid of these techniques, the existence of reverse-crevice corrosion in copper was verified, i.e., while the surface of a crevice was corrosion free, the outside surface of the copper was attacked. The processes associated with this phenomenon were classified into three phases, and different compositions of the corrosion products were determined. Raman spectra showed that copper and Cu2O were found in the crevice, while CuO, Cu2O, and CuCl2 were the corrosion products on the bold surface. Based on these findings, a hypothesis relating to the three phases of reverse crevice corrosion has been proposed.  相似文献   
306.
The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△ADC to improve SNR with high dynamic range. An adaptive algorithm and its circuit implementation is proposed. Because of the error due to the circuit implementation, an error self-calibration circuit is also designed. Simulation results indicate that SNR can he nearly independent of the signal strength.  相似文献   
307.
In recent years, dye-sensitized solar cells(DSC) based on nanocrystalline porous TiO2 films have attracted much attention because of their relatively higher efficiency and low cost compared with conventional inorganic photovoltaic devices. This type of solar cell has achieved an impressive photo-to-energy conversion efficiency of over 10% where the electrolyte is volatile organic liquid solvents containing I^-/I3^- as redox couple. Because of high volatilities, solvent losses occur during long-term operations, resulting in lowered DSC performances. And leakage of liquid electrolyte also limits the durability of DSC.  相似文献   
308.
To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The microstructure and fracture surface of the alloy were observed by scanning electronic microscopy to analyze the potential fracture mechanisms under the experimental deformation conditions. The experimental results indicate that the fracture strain increases with increasing deformation temperature, decreasing strain rate, and decreasing stress triaxiality. Fracture is mainly caused by the nucleation, growth, and coalescence of microvoids because of the breakdown of compatibility requirements at the α/β interface. In the equiaxed microstructure, the fracture strain decreases with decreasing volume fraction of the primary α-phase (αp) and increasing α/β-interface length. In the bimodal microstructure, the fracture strain is mainly affected by α-lamella width.  相似文献   
309.
Lin YY  Kiihl S  Suhail Y  Liu SY  Chou YH  Kuang Z  Lu JY  Khor CN  Lin CL  Bader JS  Irizarry R  Boeke JD 《Nature》2012,482(7384):251-255
First identified as histone-modifying proteins, lysine acetyltransferases (KATs) and deacetylases (KDACs) antagonize each other through modification of the side chains of lysine residues in histone proteins. Acetylation of many non-histone proteins involved in chromatin, metabolism or cytoskeleton regulation were further identified in eukaryotic organisms, but the corresponding enzymes and substrate-specific functions of the modifications are unclear. Moreover, mechanisms underlying functional specificity of individual KDACs remain enigmatic, and the substrate spectra of each KDAC lack comprehensive definition. Here we dissect the functional specificity of 12 critical human KDACs using a genome-wide synthetic lethality screen in cultured human cells. The genetic interaction profiles revealed enzyme-substrate relationships between individual KDACs and many important substrates governing a wide array of biological processes including metabolism, development and cell cycle progression. We further confirmed that acetylation and deacetylation of the catalytic subunit of the adenosine monophosphate-activated protein kinase (AMPK), a critical cellular energy-sensing protein kinase complex, is controlled by the opposing catalytic activities of HDAC1 and p300. Deacetylation of AMPK enhances physical interaction with the upstream kinase LKB1, leading to AMPK phosphorylation and activation, and resulting in lipid breakdown in human liver cells. These findings provide new insights into previously underappreciated metabolic regulatory roles of HDAC1 in coordinating nutrient availability and cellular responses upstream of AMPK, and demonstrate the importance of high-throughput genetic interaction profiling to elucidate functional specificity and critical substrates of individual human KDACs potentially valuable for therapeutic applications.  相似文献   
310.
Patterns and rates of exonic de novo mutations in autism spectrum disorders   总被引:1,自引:0,他引:1  
Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号