首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   12篇
  国内免费   10篇
系统科学   8篇
丛书文集   27篇
教育与普及   9篇
理论与方法论   4篇
综合类   498篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   13篇
  2018年   4篇
  2017年   9篇
  2016年   15篇
  2015年   10篇
  2014年   26篇
  2013年   29篇
  2012年   24篇
  2011年   31篇
  2010年   28篇
  2009年   32篇
  2008年   29篇
  2007年   36篇
  2006年   41篇
  2005年   29篇
  2004年   27篇
  2003年   10篇
  2002年   5篇
  2001年   13篇
  2000年   14篇
  1999年   16篇
  1998年   9篇
  1997年   11篇
  1996年   5篇
  1995年   10篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   13篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
排序方式: 共有546条查询结果,搜索用时 12 毫秒
51.
 采用有机溶剂-水蒸汽蒸馏提取短柄南蛇藤叶挥发性成分,用GC/MS进行分离测定,从短柄南蛇藤叶超微粉和普通粉中分别分离鉴定出55种和50种化学成分,分别占挥发油总量的87.43%和92.24%。短柄南蛇藤叶2种粉末挥发油成分中,含有45种相同成分,其中相对含量最高的分别为油酸(普通粉3159%),13-十八碳烯(超微粉17.88%)。文章首次对短柄南蛇藤超微粉与普通粉挥发性成分进行定性定量的对比研究,为其研究应用提供了科学数据。  相似文献   
52.
为研究冰雹灾害对土质边坡稳定性的影响,自主设计了一套冰雹降落装置,采用自制冰球对模型边坡进行加载. 共进行了3组试验,通过高灵敏度动土压力监测系统获得土压力,拟合冲击力;通过摄影测量技术(PIV)监测冰球冲击坡面时的速度向量,计算法向和切向恢复系数,同时监测加载过程中位移变化规律;通过含水率监测系统监测坡体含水率,分析试验前后的水分迁移规律. 试验结果表明:在加载密度和加载次数较大时,冲击会使边坡产生浅层滑动,落于坡顶面的冰球重新分布形成堆积,逐渐融化,向下形成渗流;加载瞬时形成冲击荷载,可将其拟合为衰减的半正弦波形;法向恢复系数较小,切向恢复系数较大,冰球在冲击过程中倾向于沿坡面运动;含水率传感器从上到下依次响应,边坡后端融水渗流速度比前端更快,融水主要影响坡顶平台,坡顶平台中层水分迁移速度最快;静土压力与坡顶堆载和冰球融化渗流有直接联系;坡体整体变形较小,最大变形位于坡顶转角处;试验结果反映了冰雹降落对边坡稳定性影响的3个方面:冲击作用、堆载作用、渗透作用,可为冰雪极端灾害条件下的边坡安全预警提供参考和依据.  相似文献   
53.
针对筋箍碎石桩复合地基的受力变形特点,考虑桩-土的初始应力状态,假定桩为具有恒定剪胀角的弹塑性体,且满足摩尔库伦屈服准则与非关联流动法则,土体和加筋体为线弹性材料,考虑桩-筋材-土三者间相互作用,导得了筋箍碎石桩复合地基桩土应力比计算新公式.为验证本文计算公式的可行性,将本文方法计算结果与弹塑性极限分析方法结果进行对比分析,两者吻合良好.在此基础上,分析探讨了筋材刚度、桩周土变形模量、面积置换率等因素对筋箍碎石桩复合地基桩土应力比的影响.分析结果表明:筋材刚度是桩土应力比的主要影响因素,桩土应力比随筋材刚度、面积置换率、桩体内摩擦角的增大而增大,随着桩周土变形模量和桩体剪胀角的增大而减小.  相似文献   
54.
过7组三维有限差分数值模拟试验,研究了循环荷载作用下筋箍碎石桩复合地基的动力特性,着重分析了4个重要参数对其性能的影响,并将数值计算结果与室内模型试验结果进行了对比分析,验证了数值计算结果的合理性. 结果表明,在循环荷载作用下,筋箍碎石桩复合地基的应力和沉降变化具有明显的动力特性. 相同循环加载条件下,增大碎石密度可有效提高碎石桩的承载力. 筋材使碎石桩的力学性能得到了改善,不同长度的加筋会对碎石桩产生明显不同的效果,在一定范围内增加碎石桩的加筋长度可以有效提高碎石桩的承载力. 筋材对复合地基顶部的累积沉降和应力集中率有显著影响. 筋材能提高碎石桩的整体性,加筋长度越长的碎石桩的振动协调性越好. 桩径对筋箍碎石桩复合地基顶部累积沉降的影响比较明显,碎石桩的最佳L/d值为8/3. 数值计算结果与室内模型试验结果拟合较好,沉降值最大相差7%,桩侧应力值最大相差9%.  相似文献   
55.
The Hyers-Ulam stability of ( α,β ) - derivations from a unital ring R to a R -bimodulewhich is a cone Banach space with the cone norm ||·||P , whereP is a normal cone in a real Banach spaceE is investigated associated with the following functional equationf (( a + b) c ) = f ( a ) α ( c ) + β ( a ) f ( c ) + f (b) α ( c ) + β (b) f ( c ) using the fixed point method and the direct method respectively.  相似文献   
56.
基于高陡横坡段桩柱式桥梁双桩基础承载特性,提出了一种改进有限杆单元计算分析方法.分析了高陡横坡段桩柱式桥梁双桩基础承载机理及受力特性,建立了双桩基础计算分析模型.其次,根据前、后桩与边坡相对位置关系,给出了后桩所受剩余下滑力与前桩所受土压力的比例关系.在传统有限杆单元分析方法基础上,结合陡坡桩受力特征,导得了考虑桩土共同作用与P-Δ效应的单元刚度矩阵修正方法,并在此基础上编制了适用于高陡横坡段桩柱式桥梁双桩基础的有限杆单元分析MATLAB计算程序.采用室内模型试验对本文计算方法进行验证,给出了适用于陡坡段桥梁桩基的设计流程图.研究结果表明:本文理论计算值与模型试验实测结果吻合良好,表明本文计算方法正确可行,可为同类工程设计提供参考.  相似文献   
57.
为分析开口管桩沉桩过程中产生的土塞效应,首先从土塞的形成过程和作用机理出发,建立了土塞单元体的受力平衡方程,得出了垂直向总荷载的表达式;其次,将土塞视为桩中桩,基于太沙基桩端极限承载力理论,得出桩中桩桩端极限承载力的表达式,从而导得管桩在沉桩过程中土塞高度的表达式;最后,将本文理论计算结果与工程实例进行对比分析,并进一步分析了径厚比、土的黏聚力以及桩土表面粗糙度对管桩沉桩过程中形成的土塞高度的影响,得出结论:同一入土深度,土塞高度随着径厚比增大而增大,随着桩土表面粗糙度的增加而减小,而土的黏聚力对土塞高度的影响不大.结果表明本文计算方法是基本可行的,对开口管桩沉桩过程中土塞高度的预测计算具有一定的参考价值.  相似文献   
58.
氢能由于具有环境友好、可再生、零二氧化碳排放等特点,被认为是未来最具有潜力的能源载体和传统化石能源的最佳替代品.电解水包括两个半反应:析氢反应(HER)和析氧反应(OER).近几年来,贵金属由于其优异的催化性能,特别是与新旧能源转换与利用相关的电催化性能,已经引起了人们的广泛关注.贵金属铂(Pt)是HER最优异的催化剂,但其高昂的价格、极低的地球储量极大的限制了其大规模的工业化应用.为了减少Pt用量,本实验采用具有大的比表面积、丰富的孔洞且易于制备的金属有机框架材料(简称MOFs)PCN-250-Fe与适量氯铂酸(H2PtCl6·6H2O)进行复合再经过高温还原煅烧,最终得到具有良好HER性能的复合产物Pt@PCN-250-Fe,同时,我们对此复合产物进行了一系列的材料表征及电化学HER性能研究.  相似文献   
59.
根据软土地层桥梁群桩基础的沉降特性,推导该地质环境下群桩模型试验相似法则,自行设计带承台群桩基础的室内模型并开展试验研究.试验结果表明:在桩身范围内,附加应力随深度衰减,在分布形式上,附加应力分布形式可近似为三角形;同时,桩侧土体的竖向应力随着桩顶沉降的增加而相应的增加,在接近极限荷载产生较大沉降时也没有表现出明显收敛的现象;群桩在施加荷载时(不同施工阶段),桩周上部分土中产生较大的超静孔隙水压力,随着时间逐渐消散,即土体的固结过程需要一定时间;群桩的荷载与沉降关系明显呈现非线性特性,其P-S曲线大致可以划分为线性阶段、屈服阶段和整体破坏阶段3个阶段;且通过试验可知卸载后,各群桩位移回弹很小,经外荷载作用后,产生较大的塑性变形,因而群桩沉降应作为桩基础设计控制条件之一.  相似文献   
60.
根据大体积混凝土温度变化原理,给出了大体积混凝土的结构计算温度差及温度应力计算的方法,并对温度监测、施工措施进行了探讨;实例分析结果表明,理论值与实测值比较接近,该方法是有效的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号