排序方式: 共有11条查询结果,搜索用时 0 毫秒
11.
针对中长期水文预报的模型辨识进行研究,探讨了预处理、建模数据量和建模方式对于模型预测精度的影响。利用基于有限采样信息准则(FSIC)的组合信息准则(CIC)对模型进行定阶,结合Kalman滤波方法进行非线性预测研究。研究表明:① 在进行模型辨识时,如果预处理导致识别的模型复杂度大幅度降低,应通过模型的预测结果对预处理方法的合理性进行检验;② 建模数据量应足以反映时序的内在波动性,但并不是越多越好,过多的建模数据量会导致模型的复杂性大幅度增加,在增加计算耗时的同时,也降低了预测的稳健性;③ 滑动模型主要是改善了较高径流值和径流峰值的预测情况,相对牺牲了较低径流值的预测精度;④ Kalman滤波方法全方位、大幅度的提高了径流在各个区段的预测效果,其峰值预测准确率更是高达63.64%。 相似文献