首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   4篇
  国内免费   2篇
系统科学   5篇
理论与方法论   4篇
现状及发展   82篇
研究方法   31篇
综合类   120篇
  2021年   2篇
  2020年   1篇
  2018年   10篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   8篇
  2013年   14篇
  2012年   19篇
  2011年   27篇
  2010年   5篇
  2009年   1篇
  2008年   9篇
  2007年   28篇
  2006年   21篇
  2005年   14篇
  2004年   11篇
  2003年   13篇
  2002年   9篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1986年   1篇
  1985年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1967年   3篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1957年   4篇
  1956年   1篇
  1955年   1篇
  1947年   1篇
  1946年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
1.
In this paper, I argue that in order to understand the process behind the knowledge production in the historical sciences, we should change our theoretical focus slightly to consider the historical sciences as technoscientific disciplines. If we investigate the intertwinement of technology and theory, we can provide new insights into historical scientific knowledge production, preconditions, and aims. I will provide evidence for my claim by showing the central features of paleontological and paleobiological data practices of the nineteenth and twentieth centuries. In order to work with something that is imperfect and incomplete (the fossil record), paleontologists used different technological devices. These devices process, extract, correct, simulate, and eventually present paleontological explananda. Therefore, the appearance of anatomical features of non-manipulable fossilized organisms, phenomena such as mass-extinctions, or the life-like display of extinct specimens in a museum's hall, depend both on the correct use of technological devices and on the interplay between these devices and theories. Consequently, in order to capture its underlying epistemology, historical sciences should be analyzed and investigated against other technoscientific disciplines such as chemistry, synthetic biology, and nanotechnology, and not necessarily only against classical experimental sciences. This approach will help us understand how historical scientists can obtain their epistemic access to deep time.  相似文献   
2.
DNA methylation is the major epigenetic modification and it is involved in the negative regulation of gene expression. Its alteration can lead to neoplastic transformation. Several biomolecular approaches are nowadays used to study this modification on DNA, but also on RNA molecules, which are known to play a role in different biological processes. RNA methylation is one of the most common RNA modifications and 5-methylcytosine presence has recently been suggested in mRNA. However, an analysis of nucleic acid methylation at electron microscope is still lacking. Therefore, we visualized DNA methylation status and RNA methylation sites in the interphase nucleus of HeLa cells and rat hepatocytes by ultrastructural immunocytochemistry and cytochemical staining. This approach represents an efficient alternative to study nucleic acid methylation. In particular, this ultrastructural method makes the visualization of this epigenetic modification on a single RNA molecule possible, thus overcoming the technical limitations for a (pre-)mRNA methylation analysis.  相似文献   
3.
Measurement is widely applied because its results are assumed to be more reliable than opinions and guesses, but this reliability is sometimes justified in a stereotyped way. After a critical analysis of such stereotypes, a structural characterization of measurement is proposed, as partly empirical and partly theoretical process, by showing that it is in fact the structure of the process that guarantees the reliability of its results. On this basis the role and the structure of background knowledge in measurement and the justification of the conditions of object-relatedness (“objectivity”) and subject-independence (“intersubjectivity”) of measurement are specifically discussed.  相似文献   
4.
5.
It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25?Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.  相似文献   
6.
The evolution of the optical absorption spectrum of bimetallic Ag-Au monolayer-protected clusters (MPC) obtained by progressively doping Ag into the experimentally known structure of Au133(SR)52 was predicted via rigorous time-dependent density-functional theory (TDDFT) calculations. In addition to monometallic Au133(SR)52 and Ag133(SR)52 species, 5 different (Ag-Au)133(SR)52 homotops were considered with varying Ag content and site positioning, and their electronic structure and optical response were analyzed in terms of Projected Density Of States (PDOS), the induced or transition electron density, and Transition Component Maps (TCM) at selected excitation energies. It was found that Ag doping led to the effects rather different from those encountered in bare metal clusters. And it was also observed that Ag doping could produce structured spectral features, especially in the 3–4 eV range but also in the optical region if Ag atoms were located in the sub-staple region, as rationalized by the accompanying electronic analysis. Additionally, Au doping into the staples of Ag-rich MPC also gave rise to a more homogeneous induced electron density. These findings show the great sensitivity of the electronic response of MPC nanoalloy systems to the exact location of the alloying sites.  相似文献   
7.
Symmetry-breaking interactions have a crucial role in many areas of physics, ranging from classical ferrofluids to superfluid (3)He and d-wave superconductivity. For superfluid quantum gases, a variety of new physical phenomena arising from the symmetry-breaking interaction between electric or magnetic dipoles are expected. Novel quantum phases in optical lattices, such as chequerboard or supersolid phases, are predicted for dipolar bosons. Dipolar interactions can also enrich considerably the physics of quantum gases with internal degrees of freedom. Arrays of dipolar particles could be used for efficient quantum information processing. Here we report the realization of a chromium Bose-Einstein condensate with strong dipolar interactions. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the atom cloud; for strong dipolar interactions, the inversion of ellipticity during expansion (the usual 'smoking gun' evidence for a Bose-Einstein condensate) can be suppressed. These effects are accounted for by taking into account the dipolar interaction in the superfluid hydrodynamic equations governing the dynamics of the gas, in the same way as classical ferrofluids can be described by including dipolar terms in the classical hydrodynamic equations. Our results are a first step in the exploration of the unique properties of quantum ferrofluids.  相似文献   
8.
Human CtIP promotes DNA end resection   总被引:3,自引:0,他引:3  
Sartori AA  Lukas C  Coates J  Mistrik M  Fu S  Bartek J  Baer R  Lukas J  Jackson SP 《Nature》2007,450(7169):509-514
In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.  相似文献   
9.
Ultracold atoms trapped by light offer robust quantum coherence and controllability, providing an attractive system for quantum information processing and for the simulation of complex problems in condensed matter physics. Many quantum information processing schemes require the manipulation and deterministic entanglement of individual qubits; this would typically be accomplished using controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress towards this goal by demonstrating entanglement among an ensemble of atoms confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. Here we use an optical lattice of double-well potentials to isolate and manipulate arrays of paired (87)Rb atoms, inducing controlled entangling interactions within each pair. Our experiment realizes proposals to use controlled exchange coupling in a system of neutral atoms. Although 87Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation demonstrates the essential component of a neutral atom quantum SWAP gate (which interchanges the state of two qubits). Its 'half-implementation', the root SWAP gate, is entangling, and together with single-qubit rotations it forms a set of universal gates for quantum computation.  相似文献   
10.
Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100-1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H(2)SO(4)-H(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号