首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  1990年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Receptors stimulating phospholipase C do so through heterotrimeric GTP-binding proteins to produce two second messengers, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol. In spite of the detailed understanding of phospholipase C structure and phosphatidyl inositol signalling, the identity of the GTP-binding protein involved is so far unknown. To address this issue, we have used the Xenopus oocyte in which muscarinic receptors couple to phospholipase C through a pertussis toxin-sensitive GTP-binding protein. In this cell, InsP3 mobilizes intracellular Ca2+ to evoke a Cl- current. The magnitude of this Cl- current is proportional to the amount of InsP3 in the cell, and therefore can be used as an assay for InsP3 production. We report here that the activated alpha-subunit of the GTP-binding protein GO, when directly injected into oocytes, evokes a Cl- current by mobilizing Ca2+ from intracellular InsP3-sensitive stores. We also show that holo-GO, when injected into oocytes, can specifically enhance the muscarinic receptor-stimulated Cl- current. These data indicate that GO can serve as the signal transducer of the receptor-regulated phospholipase C in Xenopus oocytes.  相似文献   
2.
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.  相似文献   
3.
Avrani S  Wurtzel O  Sharon I  Sorek R  Lindell D 《Nature》2011,474(7353):604-608
Prochlorococcus cyanobacteria are extremely abundant in the oceans, as are the viruses that infect them. How hosts and viruses coexist in nature remains unclear, although the presence of both susceptible and resistant cells may allow this coexistence. Combined whole-genome sequencing and PCR screening technology now enables us to investigate the effect of resistance on genome evolution and the genomic mechanisms behind the long-term coexistence of Prochlorococcus and their viruses. Here we present a genome analysis of 77 substrains selected for resistance to ten viruses, revealing mutations primarily in non-conserved, horizontally transferred genes that localize to a single hypervariable genomic island. Mutations affected viral attachment to the cell surface and imposed a fitness cost to the host, manifested by significantly lower growth rates or a previously unknown mechanism of more rapid infection by other viruses. The mutant genes are generally uncommon in nature yet some carry polymorphisms matching those found experimentally. These data are empirical evidence indicating that viral-attachment genes are preferentially located in genomic islands and that viruses are a selective pressure enhancing the diversity of both island genes and island gene content. This diversity emerges as a genomic mechanism that reduces the effective host population size for infection by a given virus, thus facilitating long-term coexistence between viruses and their hosts in nature.  相似文献   
4.
Amunts A  Drory O  Nelson N 《Nature》2007,447(7140):58-63
All higher organisms on Earth receive energy directly or indirectly from oxygenic photosynthesis performed by plants, green algae and cyanobacteria. Photosystem I (PSI) is a supercomplex of a reaction centre and light-harvesting complexes. It generates the most negative redox potential in nature, and thus largely determines the global amount of enthalpy in living systems. We report the structure of plant PSI at 3.4 A resolution, revealing 17 protein subunits. PsaN was identified in the luminal side of the supercomplex, and most of the amino acids in the reaction centre were traced. The crystal structure of PSI provides a picture at near atomic detail of 11 out of 12 protein subunits of the reaction centre. At this level, 168 chlorophylls (65 assigned with orientations for Q(x) and Q(y) transition dipole moments), 2 phylloquinones, 3 Fe(4)S(4) clusters and 5 carotenoids are described. This structural information extends the understanding of the most efficient nano-photochemical machine in nature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号