首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
现状及发展   2篇
研究方法   6篇
综合类   5篇
  2012年   2篇
  2011年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1979年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development.  相似文献   
12.
To study the mitosis-specific phosphorylation of caldesmon (CaD), we generated a mutant of the C-terminal fragment (amino acids 244–538) of human fibroblast CaD (CaD39-6F), as well as a mutant of the full-length CaD (CaD-6F), in which all six potential phosphorylation sites for Cdc2 kinase were abolished. The mitotic CaD39-6F-overexpressing cells required more time to progress from anaphase start to 50% cytokinesis, exhibited larger size, and abnormally formed numerous small blebs. In contrast, overexpression of the wild-type C-terminal fragment of CaD (CaD39) did not result in abnormal bleb formation, but led to larger size and prolonged the time requirement between anaphase start and 50% cytokinesis. Similar abnormal blebs were also observed in the CaD-6F-overexpressing cells. CaD-6F-overexpressing cells did not show larger size but required more time to progress from anaphase start to 50% cytokinesis. These results suggest that mitosis-specific phosphorylation of CaD plays a role in inhibiting bleb formation and that the N-terminal fragment of CaD is required for cell size determination. Received 4 September 2002; received after revision 25 November 2002; accepted 4 December 2002  相似文献   
13.
Extremophilic organisms require specialized enzymes for their exotic metabolisms. Acid-loving thermophilic Archaea that live in the mudpots of volcanic solfataras obtain their energy from reduced sulphur compounds such as hydrogen sulphide (H(2)S) and carbon disulphide (CS(2)). The oxidation of these compounds into sulphuric acid creates the extremely acidic environment that characterizes solfataras. The hyperthermophilic Acidianus strain A1-3, which was isolated from the fumarolic, ancient sauna building at the Solfatara volcano (Naples, Italy), was shown to rapidly convert CS(2) into H(2)S and carbon dioxide (CO(2)), but nothing has been known about the modes of action and the evolution of the enzyme(s) involved. Here we describe the structure, the proposed mechanism and evolution of a CS(2) hydrolase from Acidianus A1-3. The enzyme monomer displays a typical β-carbonic anhydrase fold and active site, yet CO(2) is not one of its substrates. Owing to large carboxy- and amino-terminal arms, an unusual hexadecameric catenane oligomer has evolved. This structure results in the blocking of the entrance to the active site that is found in canonical β-carbonic anhydrases and the formation of a single 15-?-long, highly hydrophobic tunnel that functions as a specificity filter. The tunnel determines the enzyme's substrate specificity for CS(2), which is hydrophobic. The transposon sequences that surround the gene encoding this CS(2) hydrolase point to horizontal gene transfer as a mechanism for its acquisition during evolution. Our results show how the ancient β-carbonic anhydrase, which is central to global carbon metabolism, was transformed by divergent evolution into a crucial enzyme in CS(2) metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号