首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
研究方法   5篇
综合类   9篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
A combined genome-wide association and linkage study was used to identify loci causing variation in cystic fibrosis lung disease severity. We identified a significant association (P = 3.34 × 10(-8)) near EHF and APIP (chr11p13) in p.Phe508del homozygotes (n = 1,978). The association replicated in p.Phe508del homozygotes (P = 0.006) from a separate family based study (n = 557), with P = 1.49 × 10(-9) for the three-study joint meta-analysis. Linkage analysis of 486 sibling pairs from the family based study identified a significant quantitative trait locus on chromosome 20q13.2 (log(10) odds = 5.03). Our findings provide insight into the causes of variation in lung disease severity in cystic fibrosis and suggest new therapeutic targets for this life-limiting disorder.  相似文献   
2.
Abundance and diversity of microbial life in ocean crust   总被引:2,自引:0,他引:2  
Oceanic lithosphere exposed at the sea floor undergoes seawater-rock alteration reactions involving the oxidation and hydration of glassy basalt. Basalt alteration reactions are theoretically capable of supplying sufficient energy for chemolithoautotrophic growth. Such reactions have been shown to generate microbial biomass in the laboratory, but field-based support for the existence of microbes that are supported by basalt alteration is lacking. Here, using quantitative polymerase chain reaction, in situ hybridization and microscopy, we demonstrate that prokaryotic cell abundances on seafloor-exposed basalts are 3-4 orders of magnitude greater than in overlying deep sea water. Phylogenetic analyses of basaltic lavas from the East Pacific Rise (9 degrees N) and around Hawaii reveal that the basalt-hosted biosphere harbours high bacterial community richness and that community membership is shared between these sites. We hypothesize that alteration reactions fuel chemolithoautotrophic microorganisms, which constitute a trophic base of the basalt habitat, with important implications for deep-sea carbon cycling and chemical exchange between basalt and sea water.  相似文献   
3.
The discovery of the marine “deep biosphere”—microorganisms living deep below the seafloor—is one of the most significant and exciting discoveries since the ocean drilling program began more than 40 years ago. Study of the deep biosphere has become a research frontier and a hot spot both for geological and biological sciences. Here, we introduce the history of the discovery of the deep biosphere, and then we describe the types of environments for life below the seafloor, the energy sources for the living creatures, the diversity of organisms within the deep biosphere, and the new tools and technologies used in this research field. We will highlight several recently completed Integrated Ocean Drilling Program Expeditions, which targeted the subseafloor deep biosphere within the crust and sediments. Finally, future research directions and challenges of deep biosphere investigation towards uncovering the roles of subsurface microorganisms will be briefly addressed.  相似文献   
4.
ATM stabilizes DNA double-strand-break complexes during V(D)J recombination   总被引:1,自引:0,他引:1  
The ATM (ataxia-telangiectasia mutated) protein kinase mediates early cellular responses to DNA double-strand breaks (DSBs) generated during metabolic processes or by DNA-damaging agents. ATM deficiency leads to ataxia-telangiectasia, a disease marked by lymphopenia, genomic instability and an increased predisposition to lymphoid malignancies with chromosomal translocations involving lymphocyte antigen receptor loci. ATM activates cell-cycle checkpoints and can induce apoptosis in response to DNA DSBs. However, defects in these pathways of the DNA damage response cannot fully account for the phenotypes of ATM deficiency. Here, we show that ATM also functions directly in the repair of chromosomal DNA DSBs by maintaining DNA ends in repair complexes generated during lymphocyte antigen receptor gene assembly. When coupled with the cell-cycle checkpoint and pro-apoptotic activities of ATM, these findings provide a molecular explanation for the increase in lymphoid tumours with translocations involving antigen receptor loci associated with ataxia-telangiectasia.  相似文献   
5.
17q11 microdeletions that encompass NF1 cause 5%-10% of cases of neurofibromatosis type 1, and individuals with microdeletions are typically taller than individuals with intragenic NF1 mutations, suggesting that deletion of a neighboring gene might promote human growth. We identified mutations in RNF135, which is within the NF1 microdeletion region, in six families characterized by overgrowth, learning disability, dysmorphic features and variable additional features. These data identify RNF135 as causative of a new overgrowth syndrome and demonstrate that RNF135 haploinsufficiency contributes to the phenotype of NF1 microdeletion cases.  相似文献   
6.
Histocompatibility--the ability of an organism to distinguish its own cells and tissue from those of another--is a universal phenomenon in the Metazoa. In vertebrates, histocompatibility is a function of the immune system controlled by a highly polymorphic major histocompatibility complex (MHC), which encodes proteins that target foreign molecules for immune cell recognition. The association of the MHC and immune function suggests an evolutionary relationship between metazoan histocompatibility and the origins of vertebrate immunity. However, the MHC of vertebrates is the only functionally characterized histocompatibility system; the mechanisms underlying this process in non-vertebrates are unknown. A primitive chordate, the ascidian Botryllus schlosseri, also undergoes a histocompatibility reaction controlled by a highly polymorphic locus. Here we describe the isolation of a candidate gene encoding an immunoglobulin superfamily member that, by itself, predicts the outcome of histocompatibility reactions. This is the first non-vertebrate histocompatibility gene described, and may provide insights into the evolution of vertebrate adaptive immunity.  相似文献   
7.
8.
After V(D)J-mediated translocations, signal joints are retained on one of the derivative chromosomes. We report here that such signal joints are highly reactive and constitute unstable genomic elements with potential oncogenic properties.  相似文献   
9.
Starch consumption is a prominent characteristic of agricultural societies and hunter-gatherers in arid environments. In contrast, rainforest and circum-arctic hunter-gatherers and some pastoralists consume much less starch. This behavioral variation raises the possibility that different selective pressures have acted on amylase, the enzyme responsible for starch hydrolysis. We found that copy number of the salivary amylase gene (AMY1) is correlated positively with salivary amylase protein level and that individuals from populations with high-starch diets have, on average, more AMY1 copies than those with traditionally low-starch diets. Comparisons with other loci in a subset of these populations suggest that the extent of AMY1 copy number differentiation is highly unusual. This example of positive selection on a copy number-variable gene is, to our knowledge, one of the first discovered in the human genome. Higher AMY1 copy numbers and protein levels probably improve the digestion of starchy foods and may buffer against the fitness-reducing effects of intestinal disease.  相似文献   
10.
Wagner JR  Brunzelle JS  Forest KT  Vierstra RD 《Nature》2005,438(7066):325-331
Phytochromes are red/far-red light photoreceptors that direct photosensory responses across the bacterial, fungal and plant kingdoms. These include photosynthetic potential and pigmentation in bacteria as well as chloroplast development and photomorphogenesis in plants. Phytochromes consist of an amino-terminal region that covalently binds a single bilin chromophore, followed by a carboxy-terminal dimerization domain that often transmits the light signal through a histidine kinase relay. Here we describe the three-dimensional structure of the chromophore-binding domain of Deinococcus radiodurans phytochrome assembled with its chromophore biliverdin in the Pr ground state. Our model, refined to 2.5 A resolution, reaffirms Cys 24 as the chromophore attachment site, locates key amino acids that form a solvent-shielded bilin-binding pocket, and reveals an unusually formed deep trefoil knot that stabilizes this region. The structure provides the first three-dimensional glimpse into the photochromic behaviour of these photoreceptors and helps to explain the evolution of higher plant phytochromes from prokaryotic precursors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号