首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   0篇
  国内免费   1篇
系统科学   3篇
理论与方法论   1篇
现状及发展   30篇
研究方法   27篇
综合类   51篇
自然研究   4篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   17篇
  2011年   19篇
  2010年   5篇
  2009年   1篇
  2008年   10篇
  2007年   12篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   7篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有116条查询结果,搜索用时 140 毫秒
71.
Software development skills are only partially trained with traditional programming languages and software engineering courses. To achieve practical skills needed in software industry, complex examples are necessary which have to be generated in a project-like setting. This includes common solution finding, intensive communication and structured programming tasks. Here, a case study from the domain of eCommerce is presented, showing the complexity needed for these learning processes.  相似文献   
72.
Accumulation of eosinophils in tissue is a hallmark of allergic inflammation. Here we observed that a selective agonist of the PGE2 receptor EP4, ONO AE1-329, potently attenuated the chemotaxis of human peripheral blood eosinophils, upregulation of the adhesion molecule CD11b and the production of reactive oxygen species. These effects were accompanied by the inhibition of cytoskeletal rearrangement and Ca2+ mobilization. The involvement of the EP4 receptor was substantiated by a selective EP4 antagonist, which reversed the inhibitory effects of PGE2 and the EP4 agonist. Selective kinase inhibitors revealed that the inhibitory effect of EP4 stimulation on eosinophil migration depended upon activation of PI 3-kinase and PKC, but not cAMP. Finally, we found that EP4 receptors are expressed by human eosinophils, and are also present on infiltrating leukocytes in inflamed human nasal mucosa. These data indicate that EP4 agonists might be a novel therapeutic option in eosinophilic diseases.  相似文献   
73.
74.
KIF1Bβ is a kinesin-like, microtubule-based molecular motor protein involved in anterograde axonal vesicular transport in vertebrate and invertebrate neurons. Certain KIF1Bβ isoforms have been implicated in different forms of human neurodegenerative disease, with characterization of their functional integration and regulation in the context of synaptic signaling still ongoing. Here, we characterize human KIF1Bβ (isoform NM015074), whose expression we show to be developmentally regulated and elevated in cortical areas of the CNS (including the motor cortex), in the hippocampus, and in spinal motor neurons. KIF1Bβ localizes to the cell body, axon, and dendrites, overlapping with synaptic-vesicle and postsynaptic-density structures. Correspondingly, in purified cortical synaptoneurosomes, KIF1Bβ is enriched in both pre- and postsynaptic structures, forming detergent-resistant complexes. Interestingly, KIF1Bβ forms RNA–protein complexes, containing the dendritically localized Arc and Calmodulin mRNAs, proteins previously shown to be part of RNA transport granules such as Purα, FMRP and FXR2P, and motor protein KIF3A, as well as Calmodulin. The interaction between KIF1Bβ and Calmodulin is Ca+2-dependent and takes place through a domain mapped at the carboxy-terminal tail of the motor. Live imaging of cortical neurons reveals active movement by KIF1Bβ at dendritic processes, suggesting that it mediates the transport of dendritically localized mRNAs. Finally, we show that synaptic recruitment of KIF1Bβ is activity-dependent and increased by stimulation of metabotropic or ionotropic glutamate receptors. The activity-dependent synaptic recruitment of KIF1Bβ, its interaction with Ca2+ sensor Calmodulin, and its new role as a dendritic motor of ribonucleoprotein complexes provide a novel basis for understanding the concerted co-ordination of motor protein mobilization and synaptic signaling pathways.  相似文献   
75.
Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2   总被引:15,自引:0,他引:15  
Wu L  Bauer CS  Zhen XG  Xie C  Yang J 《Nature》2002,419(6910):947-952
Voltage-gated calcium channels (VGCCs) conduct calcium into cells after membrane depolarization and are vital for diverse biological events. They are regulated by various signalling pathways, which has profound functional consequences. The activity of VGCCs decreases with time in whole-cell and inside-out patch-clamp recordings. This rundown reflects persistent intrinsic modulation of VGCCs in intact cells. Although several mechanisms have been reported to contribute to rundown of L-type channels, the mechanism of rundown of other types of VGCC is poorly understood. Here we show that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), an essential regulator of ion channels and transporters, is crucial for maintaining the activity of P/Q- and N-type channels. Activation of membrane receptors that stimulate hydrolysis of PtdIns(4,5)P2 causes channel inhibition in oocytes and neurons. PtdIns(4,5)P2 also inhibits P/Q-type channels by altering the voltage dependence of channel activation and making the channels more difficult to open. This inhibition is alleviated by phosphorylation by protein kinase A. The dual actions of PtdIns(4,5)P2 and the crosstalk between PtdIns(4,5)P2 and protein kinase A set up a dynamic mechanism through which the activity of VGCCs can be finely tuned by various neurotransmitters, hormones and trophic factors.  相似文献   
76.
The ability of human immunodeficiency virus (HIV-1) to persist and cause AIDS is dependent on its avoidance of antibody-mediated neutralization. The virus elicits abundant, envelope-directed antibodies that have little neutralization capacity. This lack of neutralization is paradoxical, given the functional conservation and exposure of receptor-binding sites on the gp120 envelope glycoprotein, which are larger than the typical antibody footprint and should therefore be accessible for antibody binding. Because gp120-receptor interactions involve conformational reorganization, we measured the entropies of binding for 20 gp120-reactive antibodies. Here we show that recognition by receptor-binding-site antibodies induces conformational change. Correlation with neutralization potency and analysis of receptor-antibody thermodynamic cycles suggested a receptor-binding-site 'conformational masking' mechanism of neutralization escape. To understand how such an escape mechanism would be compatible with virus-receptor interactions, we tested a soluble dodecameric receptor molecule and found that it neutralized primary HIV-1 isolates with great potency, showing that simultaneous binding of viral envelope glycoproteins by multiple receptors creates sufficient avidity to compensate for such masking. Because this solution is available for cell-surface receptors but not for most antibodies, conformational masking enables HIV-1 to maintain receptor binding and simultaneously to resist neutralization.  相似文献   
77.
Caruana C  Smaglik P 《Nature》2005,436(7054):1202-1203
  相似文献   
78.
Investigation of the human antibody response to influenza virus infection has been largely limited to serology, with relatively little analysis at the molecular level. The 1918 H1N1 influenza virus pandemic was the most severe of the modern era. Recent work has recovered the gene sequences of this unusual strain, so that the 1918 pandemic virus could be reconstituted to display its unique virulence phenotypes. However, little is known about adaptive immunity to this virus. We took advantage of the 1918 virus sequencing and the resultant production of recombinant 1918 haemagglutinin (HA) protein antigen to characterize at the clonal level neutralizing antibodies induced by natural exposure of survivors to the 1918 pandemic virus. Here we show that of the 32 individuals tested that were born in or before 1915, each showed seroreactivity with the 1918 virus, nearly 90 years after the pandemic. Seven of the eight donor samples tested had circulating B cells that secreted antibodies that bound the 1918 HA. We isolated B cells from subjects and generated five monoclonal antibodies that showed potent neutralizing activity against 1918 virus from three separate donors. These antibodies also cross-reacted with the genetically similar HA of a 1930 swine H1N1 influenza strain, but did not cross-react with HAs of more contemporary human influenza viruses. The antibody genes had an unusually high degree of somatic mutation. The antibodies bound to the 1918 HA protein with high affinity, had exceptional virus-neutralizing potency and protected mice from lethal infection. Isolation of viruses that escaped inhibition suggested that the antibodies recognize classical antigenic sites on the HA surface. Thus, these studies demonstrate that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure-well into the tenth decade of life.  相似文献   
79.
Defining critical points of modulation across heterogeneous clinical syndromes may provide insight into new therapeutic approaches. Coagulation initiated by the cytokine-receptor family member known as tissue factor is a hallmark of systemic inflammatory response syndromes in bacterial sepsis and viral haemorrhagic fevers, and anticoagulants can be effective in severe sepsis with disseminated intravascular coagulation. The precise mechanism coupling coagulation and inflammation remains unresolved. Here we show that protease-activated receptor 1 (PAR1) signalling sustains a lethal inflammatory response that can be interrupted by inhibition of either thrombin or PAR1 signalling. The sphingosine 1-phosphate (S1P) axis is a downstream component of PAR1 signalling, and by combining chemical and genetic probes for S1P receptor 3 (S1P3) we show a critical role for dendritic cell PAR1-S1P3 cross-talk in regulating amplification of inflammation in sepsis syndrome. Conversely, dendritic cells sustain escalated systemic coagulation and are the primary hub at which coagulation and inflammation intersect within the lymphatic compartment. Loss of dendritic cell PAR1-S1P3 signalling sequesters dendritic cells and inflammation into draining lymph nodes, and attenuates dissemination of interleukin-1beta to the lungs. Thus, activation of dendritic cells by coagulation in the lymphatics emerges as a previously unknown mechanism that promotes systemic inflammation and lethality in decompensated innate immune responses.  相似文献   
80.
Neurogenesis is the developmental process regulating cell proliferation of neural stem cells, determining their differentiation into glial and neuronal cells, and orchestrating their organization into finely regulated functional networks. Can this complex process be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology? Can neurodevelopmental and neurodegenerative diseases be modeled using iPSCs? What is the potential of iPSC technology in neurobiology? What are the recent advances in the field of neurological diseases? Since the applications of iPSCs in neurobiology are based on the capacity to regulate in vitro differentiation of human iPSCs into different neuronal subtypes and glial cells, and the possibility of obtaining iPSC-derived neurons and glial cells is based on and hindered by our poor understanding of human embryonic development, we reviewed current knowledge on in vitro neural differentiation from a developmental and cellular biology perspective. We highlight the importance to further advance our understanding on the mechanisms controlling in vivo neurogenesis in order to efficiently guide neurogenesis in vitro for cell modeling and therapeutical applications of iPSCs technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号