首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39697篇
  免费   136篇
  国内免费   174篇
系统科学   187篇
丛书文集   547篇
教育与普及   76篇
理论与方法论   126篇
现状及发展   17650篇
研究方法   1632篇
综合类   19164篇
自然研究   625篇
  2013年   319篇
  2012年   569篇
  2011年   1173篇
  2010年   255篇
  2008年   698篇
  2007年   827篇
  2006年   768篇
  2005年   817篇
  2004年   823篇
  2003年   723篇
  2002年   738篇
  2001年   1244篇
  2000年   1188篇
  1999年   805篇
  1994年   389篇
  1992年   773篇
  1991年   551篇
  1990年   618篇
  1989年   601篇
  1988年   566篇
  1987年   613篇
  1986年   655篇
  1985年   818篇
  1984年   596篇
  1983年   521篇
  1982年   479篇
  1981年   489篇
  1980年   517篇
  1979年   1303篇
  1978年   1008篇
  1977年   933篇
  1976年   756篇
  1975年   782篇
  1974年   1090篇
  1973年   943篇
  1972年   953篇
  1971年   1072篇
  1970年   1476篇
  1969年   1150篇
  1968年   1067篇
  1967年   1066篇
  1966年   1000篇
  1965年   747篇
  1959年   376篇
  1958年   720篇
  1957年   477篇
  1956年   407篇
  1955年   365篇
  1954年   414篇
  1948年   285篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
We report a new mechanism in carcinogenesis involving coordinate long-range epigenetic gene silencing. Epigenetic silencing in cancer has always been envisaged as a local event silencing discrete genes. However, in this study of silencing in colorectal cancer, we found common repression of the entire 4-Mb band of chromosome 2q.14.2, associated with global methylation of histone H3 Lys9. DNA hypermethylation within the repressed genomic neighborhood was localized to three separate enriched CpG island 'suburbs', with the largest hypermethylated suburb spanning 1 Mb. These data change our understanding of epigenetic gene silencing in cancer cells: namely, epigenetic silencing can span large regions of the chromosome, and both DNA-methylated and neighboring unmethylated genes can be coordinately suppressed by global changes in histone modification. We propose that loss of gene expression can occur through long-range epigenetic silencing, with similar implications as loss of heterozygosity in cancer.  相似文献   
982.
Neutron diffraction provides an experimental method of directly locating hydrogen atoms in proteins, a technique complimentary to ultra-high-resolution [1, 2] X-ray diffraction. Three different types of neutron diffractometers for biological macromolecules have been constructed in Japan, France and the United States, and they have been used to determine the crystal structures of proteins up to resolution limits of 1.5-2.5 A. Results relating to hydrogen positions and hydration patterns in proteins have been obtained from these studies. Examples include the geometrical details of hydrogen bonds, H/D exchange in proteins and oligonucleotides, the role of hydrogen atoms in enzymatic activity and thermostability, and the dynamical behavior of hydration structures, all of which have been extracted from these structural results and reviewed. Other techniques, such as the growth of large single crystals, the preparation of fully deuterated proteins, the use of cryogenic techniques, and a data base of hydrogen and hydration in proteins, will be described.  相似文献   
983.
984.
985.
Snake envenomation is a socio-medical problem of considerable magnitude. About 2.5 million people are bitten by snakes annually, more than 100,000 fatally. However, although bites can be deadly, snake venom is a natural biological resource that contains several components of potential therapeutic value. Venom has been used in the treatment of a variety of pathophysiological conditions in Ayurveda, homeopathy and folk medicine. With the advent of biotechnology, the efficacy of such treatments has been substantiated by purifying components of venom and delineating their therapeutic properties. This review will focus on certain snake venom components and their applications in health and disease. Received 6 July 2006; received after revision 14 August 2006; accepted 28 September 2006  相似文献   
986.
Based on the classification of bacterial lipolytic enzymes, family I.3 lipase is a member of the large group of Gram-negative bacterial true lipases. This lipase family is distinguished from other families not only by the amino acid sequence, but also by the secretion mechanism. Lipases of family I.3 are secreted via the well-known type I secretion system. Like most of proteins secreted via this system, family I.3 lipases are composed of two domains with distinct yet related functions. Recent years have seen an increasing amount of research on this lipase family, in terms of isolation, secretion mechanism, as well as biochemical and biophysical studies. This review describes our current knowledge on the structure-function relationships of family I.3 lipase, with an emphasis on its secretion mechanism. Received 18 April 2006; received after revision 3 July 2006; accepted 24 August 2006  相似文献   
987.
Phytanic acid is a branched-chain fatty acid that accumulates in a variety of metabolic disorders. High levels of phytanic acid found in patients can exceed the millimolar range and lead to severe symptoms. Degradation of phytanic acid takes place by α-oxidation inside the peroxisome. A deficiency of its breakdown, leading to elevated levels, can result from either a general peroxisomal dysfunction or from a defect in one of the enzymes involved in α-oxidation. Research on Refsum disease, belonging to the latter group of disorders and characterized by a deficiency of the first enzyme of α-oxidation, has extended our knowledge of phytanic acid metabolism and pathology of the disease greatly over the past few decades. This review will centre on this research on phytanic acid: its origin, the mechanism by which its α-oxidation takes place, its role in human disease and the way it is produced from phytol. Received 4 October 2005; received after revision 24 February 2006; accepted 26 April 2006  相似文献   
988.
Isoprenoids are synthesized in all living organisms and are incorporated into diverse classes of end-products that participate in a multitude of cellular processes relating to cell growth, differentiation, cytoskeletal function and vesicle trafficking. In humans, the non-sterol isoprenoids, farnesyl pyrophosphate and geranylgeranyl-pyrophosphate, are synthesized via the mevalonate pathway and are covalently added to members of the small G protein superfamily. Isoprenylated proteins have key roles in membrane attachment and protein functionality, have been shown to have a central role in some cancers and are likely also to be involved in the pathogenesis and progression of atherosclerosis and Alzheimer disease. This review details current knowledge on the biosynthesis of isoprenoids, their incorporation into proteins by the process known as prenylation and the complex regulatory network that controls these proteins. An improved understanding of these processe is likely to lead to the development of novel therapies that will have important implications for human health and disease. Received 5 July 2005; received after revision 17 October 2005; accepted 22 October 2005  相似文献   
989.
Selenium is an essential trace element. In cattle, selenium deficiency causes dysfunction of various organs, including skeletal and cardiac muscles. In humans as well, lack of selenium is associated with many disorders, but despite accumulation of clinical reports, muscle diseases are not generally considered on the list. The goal of this review is to establish the connection between clinical observations and the most recent advances obtained in selenium biology. Recent results about a possible role of selenium-containing proteins in muscle formation and repair have been collected. Selenoprotein N is the first selenoprotein linked to genetic disorders consisting of different forms of congenital muscular dystrophies. Understanding the muscle disorders associated with selenium deficiency or selenoprotein N dysfunction is an essential step in defining the causes of the disease and obtaining a better comprehension of the mechanisms involved in muscle formation and maintenance. Received 13 July 2005; received after revision 9 September 2005; accepted 4 October 2005  相似文献   
990.
Memory     
Memories become stabilized through a time-dependent process that requires gene expression and is commonly known as consolidation. During this time, memories are labile and can be disrupted by a number of interfering events, including electroconvulsive shock, trauma and other learning or the transient effect of drugs such as protein synthesis inhibitors. Once consolidated, memories are insensitive to these disruptions. However, they can again become fragile if recalled or reactivated. Reactivation creates another time-dependent process, known as reconsolidation, during which the memory is restabilized. Here we discuss some of the questions currently debated in the field of memory consolidation and reconsolidation, the molecular and anatomical requirements for both processes and, finally, their functional relationship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号