首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
现状及发展   9篇
研究方法   9篇
综合类   22篇
  2018年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1994年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有40条查询结果,搜索用时 687 毫秒
31.
ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)—lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy. The loss of ORP2 resulted in a marked reduction of active phosphorylated Akt(Ser473) and its target Glycogen synthase kinase 3β(Ser9), consistent with defective Akt signaling. ORP2 was found to form a physical complex with the key controllers of Akt activity, Cdc37, and Hsp90, and to co-localize with Cdc37 and active Akt(Ser473) at lamellipodial plasma membrane regions, in addition to the previously reported ER–LD localization. ORP2-KO reduced glucose uptake, glycogen synthesis, glycolysis, mRNA-encoding glycolytic enzymes, and SREBP-1 target gene expression, and led to defective TG synthesis and storage. ORP2-KO did not reduce but rather increased ER–LD contacts under basal culture conditions and interfered with their expansion upon fatty acid loading. Together with our recently published work (Kentala et al. in FASEB J 32:1281–1295, 2018), this study identifies ORP2 as a new regulatory nexus of Akt signaling, cellular energy metabolism, actin cytoskeletal function, cell migration, and proliferation.  相似文献   
32.
Stroke is the world's third leading cause of death. One cause of stroke, intracranial aneurysm, affects approximately 2% of the population and accounts for 500,000 hemorrhagic strokes annually in mid-life (median age 50), most often resulting in death or severe neurological impairment. The pathogenesis of intracranial aneurysm is unknown, and because catastrophic hemorrhage is commonly the first sign of disease, early identification is essential. We carried out a multistage genome-wide association study (GWAS) of Finnish, Dutch and Japanese cohorts including over 2,100 intracranial aneurysm cases and 8,000 controls. Genome-wide genotyping of the European cohorts and replication studies in the Japanese cohort identified common SNPs on chromosomes 2q, 8q and 9p that show significant association with intracranial aneurysm with odds ratios 1.24-1.36. The loci on 2q and 8q are new, whereas the 9p locus was previously found to be associated with arterial diseases, including intracranial aneurysm. Associated SNPs on 8q likely act via SOX17, which is required for formation and maintenance of endothelial cells, suggesting a role in development and repair of the vasculature; CDKN2A at 9p may have a similar role. These findings have implications for the pathophysiology, diagnosis and therapy of intracranial aneurysm.  相似文献   
33.
Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD) and type 2 diabetes (T2D), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) = 1.31, P = 1.2 x 10(-12)) and intracranial aneurysm (OR = 1.29, P = 2.5 x 10(-6)), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.  相似文献   
34.
35.
36.
In studying the genomes of extinct species, two principal limitations are typically the small quantities of endogenous ancient DNA and its degraded condition, even though products of up to 1,600 base pairs (bp) have been amplified in rare cases. Using small overlapping polymerase chain reaction products, longer stretches of sequences or even whole mitochondrial genomes can be reconstructed, but this approach is limited by the number of amplifications that can be performed from rare samples. Thus, even from well-studied Pleistocene species such as mammoths, ground sloths and cave bears, no DNA sequences of more than about 1,000 bp have been reconstructed. Here we report the complete mitochondrial genome sequence of the Pleistocene woolly mammoth Mammuthus primigenius. We used about 200 mg of bone and a new approach that allows the simultaneous retrieval of multiple sequences from small amounts of degraded DNA. Our phylogenetic analyses show that the mammoth was more closely related to the Asian than to the African elephant. However, the divergence of mammoth, African and Asian elephants occurred over a short time, corresponding to only about 7% of the total length of the phylogenetic tree for the three evolutionary lineages.  相似文献   
37.
Recombination rates seem to vary extensively along the human genome. Pedigree analysis suggests that rates vary by an order of magnitude when measured at the megabase scale, and at a finer scale, sperm typing studies point to the existence of recombination hotspots. These are short regions (1-2 kb) in which recombination rates are 10-1,000 times higher than the background rate. Less is known about how recombination rates change over time. Here we determined to what degree recombination rates are conserved among closely related species by estimating recombination rates from 14 Mb of linkage disequilibrium data in central chimpanzee and human populations. The results suggest that recombination hotspots are not conserved between the two species and that recombination rates in larger (50 kb) genomic regions are only weakly conserved. Therefore, the recombination landscape has changed markedly between the two species.  相似文献   
38.
It is not yet clear whether humans are able to learn while they are sleeping. Here we show that full-term human newborns can be taught to discriminate between similar vowel sounds when they are fast asleep. It is possible that such sleep training soon after birth could find application in clinical or educational situations.  相似文献   
39.
Human-chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.  相似文献   
40.
Ingman M  Kaessmann H  Pääbo S  Gyllensten U 《Nature》2000,408(6813):708-713
The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination, high substitution rate and maternal mode of inheritance. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号