首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2933篇
  免费   18篇
  国内免费   4篇
系统科学   46篇
理论与方法论   55篇
现状及发展   1738篇
研究方法   224篇
综合类   832篇
自然研究   60篇
  2020年   14篇
  2018年   50篇
  2017年   38篇
  2016年   47篇
  2015年   32篇
  2014年   39篇
  2013年   38篇
  2012年   112篇
  2011年   164篇
  2010年   63篇
  2009年   24篇
  2008年   100篇
  2007年   86篇
  2006年   104篇
  2005年   103篇
  2004年   93篇
  2003年   80篇
  2002年   76篇
  2001年   49篇
  2000年   35篇
  1999年   33篇
  1992年   24篇
  1991年   21篇
  1990年   28篇
  1989年   16篇
  1988年   14篇
  1987年   30篇
  1986年   18篇
  1985年   26篇
  1984年   27篇
  1982年   29篇
  1981年   18篇
  1980年   31篇
  1979年   83篇
  1978年   69篇
  1977年   91篇
  1976年   21篇
  1975年   39篇
  1974年   95篇
  1973年   81篇
  1972年   102篇
  1971年   72篇
  1970年   88篇
  1969年   94篇
  1968年   68篇
  1967年   91篇
  1966年   76篇
  1965年   57篇
  1964年   16篇
  1960年   11篇
排序方式: 共有2955条查询结果,搜索用时 15 毫秒
91.
Psoriatic arthritis (PsA) is an inflammatory joint disease that is distinct from other chronic arthritides and which is frequently accompanied by psoriasis vulgaris (PsV) and seronegativity for rheumatoid factor. We conducted a genome-wide association study in 609 German individuals with PsA (cases) and 990 controls with replication in 6 European cohorts including a total of 5,488 individuals. We replicated PsA associations at HLA-C and IL12B and identified a new association at TRAF3IP2 (rs13190932, P = 8.56 × 10?1?). TRAF3IP2 was also associated with PsV in a German cohort including 2,040 individuals (rs13190932, P = 1.95 × 10?3). Sequencing of the exons of TRAF3IP2 identified a coding variant (p.Asp10Asn, rs33980500) as the most significantly associated SNP (P = 1.13 × 10?2?, odds ratio = 1.95). Functional assays showed reduced binding of this TRAF3IP2 variant to TRAF6, suggesting altered modulation of immunoregulatory signals through altered TRAF interactions as a new and shared pathway for PsA and PsV.  相似文献   
92.
93.
Bacterial Trk and Ktr, fungal Trk and plant HKT form a family of membrane transporters permeable to K+ and/or Na+ and characterized by a common structure probably derived from an ancestral K+ channel subunit. This transporter family, specific of non-animal cells, displays a large diversity in terms of ionic permeability, affinity and energetic coupling (H+–K+ or Na+–K+ symport, K+ or Na+ uniport), which might reflect a high need for adaptation in organisms living in fluctuating or dilute environments. Trk/Ktr/HKT transporters are involved in diverse functions, from K+ or Na+ uptake to membrane potential control, adaptation to osmotic or salt stress, or Na+ recirculation from shoots to roots in plants. Structural analyses of bacterial Ktr point to multimeric structures physically interacting with regulatory subunits. Elucidation of Trk/Ktr/HKT protein structures along with characterization of mutated transporters could highlight functional and evolutionary relationships between ion channels and transporters displaying channel-like features.  相似文献   
94.
Les observatoires occidentaux se transforment en véritable usine scientifique à partir du milieu du 19e siècle. L'astrométrie symbolise ce passage à une économie industrieuse des pratiques scientifiques. Le chronographe imprimant, qui permet de réduire les équations personnelles des observateurs, s'impose, d'abord aux Etats-Unis, puis en Angleterre, en instrument-emblème de cette transformation profonde. En France, les initiatives de l'astronome Liais restent prototypiques. Ce n'est qu'au début du 20e siècle, par les voies détournées de l'observatoire d'Hendaye et de l'abbé Verschaffel, que le chronographe imprimant fait son retour et conquiert les espaces savants. La centralisation excessive de l'astronomie française, l'autoritarisme du directeur de l'Observatoire de Paris Urbain Le Verrier, et la faiblesse du marché des instruments expliquent pourquoi le chronographe imprimant n'a fait souche que très tardivement en France.  相似文献   
95.
96.
Links between cancer and stem cells have been proposed for many years. As the cancer stem cell (CSC) theory became widely studied, new methods were developed to culture and expand cancer cells with conserved determinants of “stemness”. These cells show increased ability to grow in suspension as spheres in serum-free medium supplemented with growth factors and chemicals. The physiological relevance of this phenomenon in established cancer cell lines remains unclear. Cell lines have traditionally been used to explore tumor biology and serve as preclinical models for the screening of potential therapeutic agents. Here, we grew cell-forming spheres (CFS) from 25 established colorectal cancer cell lines. The molecular and cellular characteristics of CFS were compared to the bulk of tumor cells. CFS could be isolated from 72 % of the cell lines. Both CFS and their parental CRC cell lines were highly tumorigenic. Compared to their parental cells, they showed similar expression of putative CSC markers. The ability of CRC cells to grow as CFS was greatly enhanced by prior treatment with 5-fluorouracil. At the molecular level, CFS and parental CRC cells showed identical gene mutations and very similar genomic profiles, although microarray analysis revealed changes in CFS gene expression that were independent of DNA copy-number. We identified a CFS gene expression signature common to CFS from all CRC cell lines, which was predictive of disease relapse in CRC patients. In conclusion, CFS models derived from CRC cell lines possess interesting phenotypic features that may have clinical relevance for drug resistance and disease relapse.  相似文献   
97.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.  相似文献   
98.
Gap junction channels link cytoplasms of adjacent cells. Connexins, their constitutive proteins, are essential in cell homeostasis and are implicated in numerous physiological processes. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival, and apoptosis, in which a connexin isotype, connexin 43, plays a crucial role as evidenced by genomic approaches based on gene deletion. The balance between cell proliferation/differentiation/apoptosis is a prerequisite for maintaining levels of spermatozoa essential for fertility and for limiting anarchic cell proliferation, a major risk of testis tumor. The present review highlights the emerging role of connexins in testis pathogenesis, focusing specifically on two intimately interconnected human testicular diseases (azoospermia with impaired spermatogenesis and testicular germ cell tumors), whose incidence increased during the last decades. This work proposes connexin 43 as a potential cancer diagnostic and prognostic marker, as well as a promising therapeutic target for testicular diseases.  相似文献   
99.
The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrPC). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20–50, 100–200, and 300–400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrPC. STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrPC-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1–PrPC signaling.  相似文献   
100.
Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号