首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   0篇
系统科学   2篇
现状及发展   31篇
研究方法   28篇
综合类   139篇
自然研究   15篇
  2018年   2篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   13篇
  2011年   22篇
  2010年   3篇
  2008年   14篇
  2007年   10篇
  2006年   7篇
  2005年   12篇
  2004年   29篇
  2003年   13篇
  2002年   8篇
  2001年   5篇
  2000年   11篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1990年   3篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   5篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
  1972年   5篇
  1971年   2篇
  1970年   1篇
  1969年   4篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有215条查询结果,搜索用时 46 毫秒
111.
Fraser syndrome (OMIM 219000) is a multisystem malformation usually comprising cryptophthalmos, syndactyly and renal defects. Here we report autozygosity mapping and show that the locus FS1 at chromosome 4q21 is associated with Fraser syndrome, although the condition is genetically heterogeneous. Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin. The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously implicated in BMP metabolism, suggesting that it has a role in both structure and signal propagation in the ECM. It has been speculated that Fraser syndrome is a human equivalent of the blebbed phenotype in the mouse, which has been associated with mutations in at least five loci including bl. As mapping data were consistent with homology of FRAS1 and bl, we screened DNA from bl/bl mice and identified a premature termination of mouse Fras1. Thus, the bl mouse is a model for Fraser syndrome in humans, a disorder caused by disrupted epithelial integrity in utero.  相似文献   
112.
Résumé Des souris ont été immunisées avec l'albumine du sérum humain dans l'adjuvant complet de Freund. Un jour après une injection de rappel de l'antigène la taille des mitoses, parmi les macrophages du foie dépasse celle des mitoses des souris témoins.

This work was supported by grants from the National Health and Medical Research Council of Australia and from the Postgraduate Medical Foundation of the University of Sydney. We thank MissMaria van Deventer for skilled assistance.  相似文献   
113.
Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.  相似文献   
114.
115.
Organic FAQs   总被引:1,自引:0,他引:1  
Nelson L  Giles J  Macilwain C  Gewin V 《Nature》2004,428(6985):796-798
  相似文献   
116.
Vasoregulation by the beta1 subunit of the calcium-activated potassium channel   总被引:20,自引:0,他引:20  
Small arteries exhibit tone, a partially contracted state that is an important determinant of blood pressure. In arterial smooth muscle cells, intracellular calcium paradoxically controls both contraction and relaxation. The mechanisms by which calcium can differentially regulate diverse physiological responses within a single cell remain unresolved. Calcium-dependent relaxation is mediated by local calcium release from the sarcoplasmic reticulum. These 'calcium sparks' activate calcium-dependent potassium (BK) channels comprised of alpha and beta1 subunits. Here we show that targeted deletion of the gene for the beta1 subunit leads to a decrease in the calcium sensitivity of BK channels, a reduction in functional coupling of calcium sparks to BK channel activation, and increases in arterial tone and blood pressure. The beta1 subunit of the BK channel, by tuning the channel's calcium sensitivity, is a key molecular component in translating calcium signals to the central physiological function of vasoregulation.  相似文献   
117.
Atomic structures of amyloid cross-beta spines reveal varied steric zippers   总被引:1,自引:0,他引:1  
Amyloid fibrils formed from different proteins, each associated with a particular disease, contain a common cross-beta spine. The atomic architecture of a spine, from the fibril-forming segment GNNQQNY of the yeast prion protein Sup35, was recently revealed by X-ray microcrystallography. It is a pair of beta-sheets, with the facing side chains of the two sheets interdigitated in a dry 'steric zipper'. Here we report some 30 other segments from fibril-forming proteins that form amyloid-like fibrils, microcrystals, or usually both. These include segments from the Alzheimer's amyloid-beta and tau proteins, the PrP prion protein, insulin, islet amyloid polypeptide (IAPP), lysozyme, myoglobin, alpha-synuclein and beta(2)-microglobulin, suggesting that common structural features are shared by amyloid diseases at the molecular level. Structures of 13 of these microcrystals all reveal steric zippers, but with variations that expand the range of atomic architectures for amyloid-like fibrils and offer an atomic-level hypothesis for the basis of prion strains.  相似文献   
118.
Amunts A  Drory O  Nelson N 《Nature》2007,447(7140):58-63
All higher organisms on Earth receive energy directly or indirectly from oxygenic photosynthesis performed by plants, green algae and cyanobacteria. Photosystem I (PSI) is a supercomplex of a reaction centre and light-harvesting complexes. It generates the most negative redox potential in nature, and thus largely determines the global amount of enthalpy in living systems. We report the structure of plant PSI at 3.4 A resolution, revealing 17 protein subunits. PsaN was identified in the luminal side of the supercomplex, and most of the amino acids in the reaction centre were traced. The crystal structure of PSI provides a picture at near atomic detail of 11 out of 12 protein subunits of the reaction centre. At this level, 168 chlorophylls (65 assigned with orientations for Q(x) and Q(y) transition dipole moments), 2 phylloquinones, 3 Fe(4)S(4) clusters and 5 carotenoids are described. This structural information extends the understanding of the most efficient nano-photochemical machine in nature.  相似文献   
119.
120.
Walker-Warburg syndrome (WWS) is clinically defined as congenital muscular dystrophy that is accompanied by a variety of brain and eye malformations. It represents the most severe clinical phenotype in a spectrum of diseases associated with abnormal post-translational processing of a-dystroglycan that share a defect in laminin-binding glycan synthesis1. Although mutations in six genes have been identified as causes of WWS, only half of all individuals with the disease can currently be diagnosed on this basis2. A cell fusion complementation assay in fibroblasts from undiagnosed individuals with WWS was used to identify five new complementation groups. Further evaluation of one group by linkage analysis and targeted sequencing identified recessive mutations in the ISPD gene (encoding isoprenoid synthase domain containing). The pathogenicity of the identified ISPD mutations was shown by complementation of fibroblasts with wild-type ISPD. Finally, we show that recessive mutations in ISPD abolish the initial step in laminin-binding glycan synthesis by disrupting dystroglycan O-mannosylation. This establishes a new mechanism for WWS pathophysiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号