排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
XS Ma T Herbst T Scheidl D Wang S Kropatschek W Naylor B Wittmann A Mech J Kofler E Anisimova V Makarov T Jennewein R Ursin A Zeilinger 《Nature》2012,489(7415):269-273
The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143?kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation. 相似文献
2.
3.
4.
Agricultural sustainability and intensive production practices 总被引:121,自引:0,他引:121
A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global usable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health. 相似文献
5.
The genome sequence of the filamentous fungus Neurospora crassa 总被引:1,自引:0,他引:1
Galagan JE Calvo SE Borkovich KA Selker EU Read ND Jaffe D FitzHugh W Ma LJ Smirnov S Purcell S Rehman B Elkins T Engels R Wang S Nielsen CB Butler J Endrizzi M Qui D Ianakiev P Bell-Pedersen D Nelson MA Werner-Washburne M Selitrennikoff CP Kinsey JA Braun EL Zelter A Schulte U Kothe GO Jedd G Mewes W Staben C Marcotte E Greenberg D Roy A Foley K Naylor J Stange-Thomann N Barrett R Gnerre S Kamal M Kamvysselis M Mauceli E Bielke C Rudd S Frishman D Krystofova S Rasmussen C Metzenberg RL 《Nature》2003,422(6934):859-868
Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes. 相似文献
6.
7.
A polymorphic DNA marker genetically linked to Huntington's disease 总被引:32,自引:0,他引:32
J F Gusella N S Wexler P M Conneally S L Naylor M A Anderson R E Tanzi P C Watkins K Ottina M R Wallace A Y Sakaguchi 《Nature》1983,306(5940):234-238
Family studies show that the Huntington's disease gene is linked to a polymorphic DNA marker that maps to human chromosome 4. The chromosomal localization of the Huntington's disease gene is the first step in using recombinant DNA technology to identify the primary genetic defect in this disorder. 相似文献
8.
Chang S Multani AS Cabrera NG Naylor ML Laud P Lombard D Pathak S Guarente L DePinho RA 《Nature genetics》2004,36(8):877-882
Mutational inactivation of the gene WRN causes Werner syndrome, an autosomal recessive disease characterized by premature aging, elevated genomic instability and increased cancer incidence. The capacity of enforced telomerase expression to rescue premature senescence of cultured cells from individuals with Werner syndrome and the lack of a disease phenotype in Wrn-deficient mice with long telomeres implicate telomere attrition in the pathogenesis of Werner syndrome. Here, we show that the varied and complex cellular phenotypes of Werner syndrome are precipitated by exhaustion of telomere reserves in mice. In late-generation mice null with respect to both Wrn and Terc (encoding the telomerase RNA component), telomere dysfunction elicits a classical Werner-like premature aging syndrome typified by premature death, hair graying, alopecia, osteoporosis, type II diabetes and cataracts. This mouse model also showed accelerated replicative senescence and accumulation of DNA-damage foci in cultured cells, as well as increased chromosomal instability and cancer, particularly nonepithelial malignancies typical of Werner syndrome. These genetic data indicate that the delayed manifestation of the complex pleiotropic of Wrn deficiency relates to telomere shortening. 相似文献
9.
10.
Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness 总被引:12,自引:0,他引:12
Bech-Hansen NT Naylor MJ Maybaum TA Sparkes RL Koop B Birch DG Bergen AA Prinsen CF Polomeno RC Gal A Drack AV Musarella MA Jacobson SG Young RS Weleber RG 《Nature genetics》2000,26(3):319-323
During development, visual photoreceptors, bipolar cells and other neurons establish connections within the retina enabling the eye to process visual images over approximately 7 log units of illumination. Within the retina, cells that respond to light increment and light decrement are separated into ON- and OFF-pathways. Hereditary diseases are known to disturb these retinal pathways, causing either progressive degeneration or stationary deficits. Congenital stationary night blindness (CSNB) is a group of stable retinal disorders that are characterized by abnormal night vision. Genetic subtypes of CSNB have been defined and different disease actions have been postulated. The molecular bases have been elucidated in several subtypes, providing a better understanding of the disease mechanisms and developmental retinal neurobiology. Here we have studied 22 families with 'complete' X-linked CSNB (CSNB1; MIM 310500; ref. 4) in which affected males have night blindness, some photopic vision loss and a defect of the ON-pathway. We have found 14 different mutations, including 1 founder mutation in 7 families from the United States, in a novel candidate gene, NYX. NYX, which encodes a glycosylphosphatidyl (GPI)-anchored protein called nyctalopin, is a new and unique member of the small leucine-rich proteoglycan (SLRP) family. The role of other SLRP proteins suggests that mutant nyctalopin disrupts developing retinal interconnections involving the ON-bipolar cells, leading to the visual losses seen in patients with complete CSNB. 相似文献