首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28874篇
  免费   82篇
  国内免费   158篇
系统科学   139篇
丛书文集   499篇
教育与普及   42篇
理论与方法论   100篇
现状及发展   13451篇
研究方法   1279篇
综合类   13208篇
自然研究   396篇
  2013年   269篇
  2012年   411篇
  2011年   809篇
  2010年   168篇
  2008年   524篇
  2007年   577篇
  2006年   576篇
  2005年   535篇
  2004年   538篇
  2003年   498篇
  2002年   501篇
  2001年   936篇
  2000年   865篇
  1999年   617篇
  1992年   595篇
  1991年   414篇
  1990年   486篇
  1989年   494篇
  1988年   461篇
  1987年   546篇
  1986年   474篇
  1985年   596篇
  1984年   484篇
  1983年   364篇
  1982年   340篇
  1981年   367篇
  1980年   462篇
  1979年   889篇
  1978年   757篇
  1977年   740篇
  1976年   612篇
  1975年   632篇
  1974年   845篇
  1973年   756篇
  1972年   779篇
  1971年   840篇
  1970年   1073篇
  1969年   813篇
  1968年   820篇
  1967年   795篇
  1966年   681篇
  1965年   473篇
  1964年   156篇
  1959年   249篇
  1958年   440篇
  1957年   292篇
  1956年   259篇
  1955年   246篇
  1954年   239篇
  1948年   162篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
381.
382.
383.
Sternson SM 《Nature》2011,477(7363):166-167
  相似文献   
384.
In vivo genome editing restores haemostasis in a mouse model of haemophilia   总被引:2,自引:0,他引:2  
Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.  相似文献   
385.
Simon J  Bakr WS  Ma R  Tai ME  Preiss PM  Greiner M 《Nature》2011,472(7343):307-312
Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.  相似文献   
386.
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.  相似文献   
387.
Whitesides GM  Deutch J 《Nature》2011,469(7328):21-22
  相似文献   
388.
389.
A system for the continuous directed evolution of biomolecules   总被引:1,自引:0,他引:1  
Esvelt KM  Carlson JC  Liu DR 《Nature》2011,472(7344):499-503
  相似文献   
390.
Asaadi N  Ribe NM  Sobouti F 《Nature》2011,473(7348):501-504
The convective circulation generated within the Earth's mantle by buoyancy forces of thermal and compositional origin is intimately controlled by the rheology of the rocks that compose it. These can deform either by the diffusion of point defects (diffusion creep, with a linear relationship between strain rate and stress) or by the movement of intracrystalline dislocations (nonlinear dislocation creep). However, there is still no reliable map showing where in the mantle each of these mechanisms is dominant, and so it is important to identify regions where the operative mechanism can be inferred directly from surface geophysical observations. Here we identify a new observable quantity--the rate of downstream decay of the anomalous seafloor topography (swell) produced by a mantle plume--which depends only on the value of the exponent in the strain rate versus stress relationship that defines the difference between diffusion and dislocation creep. Comparison of the Hawaiian swell topography with the predictions of a simple fluid mechanical model shows that the swell shape is poorly explained by diffusion creep, and requires a dislocation creep rheology. The rheology predicted by the model is reasonably consistent with laboratory deformation data for both olivine and clinopyroxene, suggesting that the source of Hawaiian lavas could contain either or both of these components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号