首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   0篇
系统科学   3篇
理论与方法论   3篇
现状及发展   108篇
研究方法   20篇
综合类   286篇
自然研究   20篇
  2016年   2篇
  2013年   6篇
  2012年   15篇
  2011年   34篇
  2010年   5篇
  2008年   15篇
  2007年   11篇
  2006年   12篇
  2005年   17篇
  2004年   17篇
  2003年   7篇
  2002年   15篇
  2001年   14篇
  2000年   8篇
  1999年   9篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   13篇
  1991年   6篇
  1990年   10篇
  1989年   3篇
  1988年   11篇
  1987年   5篇
  1986年   8篇
  1985年   22篇
  1984年   15篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1979年   16篇
  1978年   15篇
  1977年   8篇
  1976年   3篇
  1975年   5篇
  1974年   10篇
  1973年   8篇
  1972年   10篇
  1971年   8篇
  1970年   10篇
  1969年   7篇
  1968年   9篇
  1967年   4篇
  1966年   7篇
  1965年   9篇
  1960年   1篇
  1957年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
21.
During 21 days of indomethacin treatment, erythroid cells in the spleens of both young adult and older mice, and in the bone marrow of young adult mice, were increased significantly early, in treatment, relative to age-matched control organs, and remained high throughout treatment. During drug exposure, the numbers of myeloid cells in young adult bone marrow, but not spleen, were reduced, but in older mice these cells were elevated in both organs. Lymphoid cells in the young adult and older mouse spleens decreased and increased, respectively, during treatment, but were unchanged and decreased, respectively, in the bone marrow of young adult and older mice. Monocytemacrophage cells in the spleen were elevated but unchanged in the bone marrow of both age groups. During 14 days of indomethacin treatment of houng adult mice, the proportions of precursor cells in DNA synthesis of only the splenic erythroid lineage were increased. Thus, the major hemopoietic lineages in both the bone marrow and spleen are affected by exposure to indomethacin in a time-dependent and age-dependent manner. For all lineages studied, those of the bone marrow were least disturbed, and/or were first to recover, even during continued drug exposure.  相似文献   
22.
23.
Human hepatitis B vaccine from recombinant yeast   总被引:22,自引:0,他引:22  
The worldwide importance of human hepatitis B virus infection and the toll it takes in chronic liver disease, cirrhosis and hepatocarcinoma, make it imperative that a vaccine be developed for worldwide application. Human hepatitis B vaccines are presently prepared using hepatitis B surface antigen (HBsAg) that is purified from the plasma of human carriers of hepatitis B virus infection. The preparation of hepatitis B vaccine from a human source is restricted by the available supply of infected human plasma and by the need to apply stringent processes that purify the antigen and render it free of infectious hepatitis B virus and other possible living agents that might be present in the plasma. Joint efforts between our laboratories and those of Drs W. Rutter and B. Hall led to the preparation of vectors carrying the DNA sequence for HBsAg and antigen expression in the yeast Saccharomyces cerevisiae. Here we describe the development of hepatitis B vaccine of yeast cell origin. HBsAg of subtype adw was produced in recombinant yeast cell culture, and the purified antigen in alum formulation stimulated production of antibody in mice, grivet monkeys and chimpanzees. Vaccinated chimpanzees were totally protected when challenged intravenously with either homologous or heterologous subtype adr and ayw virus of human serum source. This is the first example of a vaccine produced from recombinant cells which is effective against a human viral infection.  相似文献   
24.
I J Udeinya  L H Miller  I A McGregor  J B Jensen 《Nature》1983,303(5916):429-431
An important feature of Plasmodium falciparum malaria which differentiates it from other human malarias is that erythrocytes infected with trophozoites and schizonts are not present in the peripheral blood but are sequestered along capillary and venular endothelium. Infected erythrocytes attach via parasite-induced ultrastructural modifications on the surface of the infected cells, called 'knobs'. This sequestration may be important for parasite survival because it prevents infected erythrocytes from circulating through the spleen where they could be eliminated. We have established an in vitro correlate of sequestration and used it to demonstrate that immune sera from repeatedly infected Aotus monkeys inhibit binding of infected erythrocytes to endothelial cells. We have investigated whether antiserum that blocks binding of one isolate of P. falciparum to target cells can block or reverse binding of other isolates. We report here that sera which block or reverse binding are strain-specific, indicating that the corresponding antigens on the surface of the infected erythrocytes are strain (isolate)-specific.  相似文献   
25.
26.
27.
28.
29.
The potential use of smallpox as a biological weapon has led to the production and stockpiling of smallpox vaccine and the immunization of some healthcare workers. Another public health goal is the licensing of a safer vaccine that could benefit the millions of people advised not to take the current one because they or their contacts have increased susceptibility to severe vaccine side effects. As vaccines can no longer be tested for their ability to prevent smallpox, licensing will necessarily include comparative immunogenicity and protection studies in non-human primates. Here we compare the highly attenuated modified vaccinia virus Ankara (MVA) with the licensed Dryvax vaccine in a monkey model. After two doses of MVA or one dose of MVA followed by Dryvax, antibody binding and neutralizing titres and T-cell responses were equivalent or higher than those induced by Dryvax alone. After challenge with monkeypox virus, unimmunized animals developed more than 500 pustular skin lesions and became gravely ill or died, whereas vaccinated animals were healthy and asymptomatic, except for a small number of transient skin lesions in animals immunized only with MVA.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号