首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
现状及发展   9篇
研究方法   1篇
综合类   4篇
自然研究   1篇
  2016年   1篇
  2015年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1979年   2篇
  1978年   2篇
  1972年   1篇
  1971年   1篇
  1966年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
Resumen Se investigaron los efectos del stress y la obesidad en diversos mecanismos fisiológicos hipotalámicos. La obesidad fué evidente inyectando aurothioglucose. Estadisticamente se registraron mayores aumentos en ratones aislados que en aquellos mantenidos familiarmente.  相似文献   
12.
13.
Modulation of A-type potassium channels by a family of calcium sensors   总被引:72,自引:0,他引:72  
In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.  相似文献   
14.
15.
The metalloproteinase BMP-1 (bone morphogenetic protein-1) plays a major role in the control of extracellular matrix (ECM) assembly and growth factor activation. Most of the growth factors activated by BMP-1 are members of the TGF-β superfamily known to regulate multiple biological processes including embryonic development, wound healing, inflammation and tumor progression. In this study, we used an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic approach to reveal the release of proteolytic fragments from the cell surface or the ECM by BMP-1. Thirty-eight extracellular proteins were found in significantly higher or lower amounts in the conditioned medium of HT1080 cells overexpressing BMP-1 and thus, could be considered as candidate substrates. Strikingly, three of these new candidates (betaglycan, CD109 and neuropilin-1) were TGF-β co-receptors, also acting as antagonists when released from the cell surface, and were chosen for further substrate validation. Betaglycan and CD109 proved to be directly cleaved by BMP-1 and the corresponding cleavage sites were extensively characterized using a new mass spectrometry approach. Furthermore, we could show that the ability of betaglycan and CD109 to interact with TGF-β was altered after cleavage by BMP-1, leading to increased and prolonged SMAD2 phosphorylation in BMP-1-overexpressing cells. Betaglycan processing was also observed in primary corneal keratocytes, indicating a general and novel mechanism by which BMP-1 directly affects signaling by controlling TGF-β co-receptor activity. The proteomic data have been submitted to ProteomeXchange with the identifier PXD000786 and doi: 10.6019/PXD000786.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号