首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   4篇
  国内免费   2篇
教育与普及   2篇
理论与方法论   1篇
现状及发展   14篇
研究方法   17篇
综合类   74篇
自然研究   1篇
  2018年   1篇
  2016年   3篇
  2012年   11篇
  2011年   11篇
  2008年   13篇
  2007年   8篇
  2006年   11篇
  2005年   12篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2000年   1篇
  1995年   1篇
  1991年   1篇
  1990年   3篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
11.
Aono N  Sutani T  Tomonaga T  Mochida S  Yanagida M 《Nature》2002,417(6885):197-202
Chromosome condensation requires condensin, which comprises five subunits. Two of these subunits--both being structural maintenance of chromosome (SMC) proteins-are coiled-coils with globular terminal domains that interact with ATP and DNA. The remaining three, non-SMC subunits also have essential, albeit undefined, roles in condensation. Here we report that Cnd2 (ref. 6), a non-SMC subunit of fission yeast similar to Drosophila Barren and the budding yeast protein Brn1 (refs 8, 9), is required for both interphase and mitotic condensation. In cnd2-1 mutants, ultraviolet-induced DNA damage is not repaired, and cells arrested by hydroxyurea do not recover. A definitive defect of interphase is abolishment of Cds1 (a checkpoint kinase) activation in the presence of hydroxyurea in both cnd2-1 mutant cells and in cells where other condensin subunits have been genetically disrupted. In the absence of hydroxyurea, a G2 checkpoint delay occurred in cnd2-1 mutants in a manner dependent on Cds1 and ATM-like Rad3, but not Chk1 (refs 10-13), before the mitotic condensation defect. Furthermore, cnd2-1 was synthetic-lethal with mutations of excision repair, RecQ helicase and DNA replication enzymes. These interphase and mitotic defects provide insight into the mechanistic role of non-SMC subunits that interact with the globular SMC domains in the heteropentameric holocomplex.  相似文献   
12.
The eye lens is composed of fibre cells, which develop from the epithelial cells on the anterior surface of the lens. Differentiation into a lens fibre cell is accompanied by changes in cell shape, the expression of crystallins and the degradation of cellular organelles. The loss of organelles is believed to ensure the transparency of the lens, but the molecular mechanism behind this process is not known. Here we show that DLAD ('DNase II-like acid DNase', also called DNase IIbeta) is expressed in human and murine lens cells, and that mice deficient in the DLAD gene are incapable of degrading DNA during lens cell differentiation--the undigested DNA accumulates in the fibre cells. The DLAD-/- mice develop cataracts of the nucleus lentis, and their response to light on electroretinograms is severely reduced. These results indicate that DLAD is responsible for the degradation of nuclear DNA during lens cell differentiation, and that if DNA is left undigested in the lens, it causes cataracts of the nucleus lentis, blocking the light path.  相似文献   
13.
The role of presenilin cofactors in the gamma-secretase complex   总被引:27,自引:0,他引:27  
Mutations in presenilin genes account for the majority of the cases of the familial form of Alzheimer's disease (FAD). Presenilin is essential for gamma-secretase activity, a proteolytic activity involved in intramembrane cleavage of Notch and beta-amyloid precursor protein (betaAPP). Cleavage of betaAPP by FAD mutant presenilin results in the overproduction of highly amyloidogenic amyloid beta42 peptides. gamma-Secretase activity requires the formation of a stable, high-molecular-mass protein complex that, in addition to the endoproteolysed fragmented form of presenilin, contains essential cofactors including nicastrin, APH-1 (refs 15-18) and PEN-2 (refs 16, 19). However, the role of each protein in complex formation and the generation of enzymatic activity is unclear. Here we show that Drosophila APH-1 (Aph-1) increases the stability of Drosophila presenilin (Psn) holoprotein in the complex. Depletion of PEN-2 by RNA interference prevents endoproteolysis of presenilin and promotes stabilization of the holoprotein in both Drosophila and mammalian cells, including primary neurons. Co-expression of Drosophila Pen-2 with Aph-1 and nicastrin increases the formation of Psn fragments as well as gamma-secretase activity. Thus, APH-1 stabilizes the presenilin holoprotein in the complex, whereas PEN-2 is required for endoproteolytic processing of presenilin and conferring gamma-secretase activity to the complex.  相似文献   
14.
Cellular uncoupling in cancerous stomach epithelium   总被引:3,自引:0,他引:3  
Y Kanno  Y Matsui 《Nature》1968,218(5143):775-776
  相似文献   
15.
Mitochondria play an important role in energy production, Ca2+ homeostasis and cell death. In recent years, the role of the mitochondria in apoptotic and necrotic cell death has attracted much attention. In apoptosis and necrosis, the mitochondrial permeability transition (mPT), which leads to disruption of the mitochondrial membranes and mitochondrial dysfunction, is considered to be one of the key events, although its exact role in cell death remains elusive. We therefore created mice lacking cyclophilin D (CypD), a protein considered to be involved in the mPT, to analyse its role in cell death. CypD-deficient mice were developmentally normal and showed no apparent anomalies, but CypD-deficient mitochondria did not undergo the cyclosporin A-sensitive mPT. CypD-deficient cells died normally in response to various apoptotic stimuli, but showed resistance to necrotic cell death induced by reactive oxygen species and Ca2+ overload. In addition, CypD-deficient mice showed a high level of resistance to ischaemia/reperfusion-induced cardiac injury. Our results indicate that the CypD-dependent mPT regulates some forms of necrotic death, but not apoptotic death.  相似文献   
16.
Fujiwara T  Bandi M  Nitta M  Ivanova EV  Bronson RT  Pellman D 《Nature》2005,437(7061):1043-1047
A long-standing hypothesis on tumorigenesis is that cell division failure, generating genetically unstable tetraploid cells, facilitates the development of aneuploid malignancies. Here we test this idea by transiently blocking cytokinesis in p53-null (p53-/-) mouse mammary epithelial cells (MMECs), enabling the isolation of diploid and tetraploid cultures. The tetraploid cells had an increase in the frequency of whole-chromosome mis-segregation and chromosomal rearrangements. Only the tetraploid cells were transformed in vitro after exposure to a carcinogen. Furthermore, in the absence of carcinogen, only the tetraploid cells gave rise to malignant mammary epithelial cancers when transplanted subcutaneously into nude mice. These tumours all contained numerous non-reciprocal translocations and an 8-30-fold amplification of a chromosomal region containing a cluster of matrix metalloproteinase (MMP) genes. MMP overexpression is linked to mammary tumours in humans and animal models. Thus, tetraploidy enhances the frequency of chromosomal alterations and promotes tumour development in p53-/- MMECs.  相似文献   
17.
Genomic alterations in cultured human embryonic stem cells   总被引:22,自引:0,他引:22  
Cultured human embryonic stem cell (hESC) lines are an invaluable resource because they provide a uniform and stable genetic system for functional analyses and therapeutic applications. Nevertheless, these dividing cells, like other cells, probably undergo spontaneous mutation at a rate of 10(-9) per nucleotide. Because each mutant has only a few progeny, the overall biological properties of the cell culture are not altered unless a mutation provides a survival or growth advantage. Clonal evolution that leads to emergence of a dominant mutant genotype may potentially affect cellular phenotype as well. We assessed the genomic fidelity of paired early- and late-passage hESC lines in the course of tissue culture. Relative to early-passage lines, eight of nine late-passage hESC lines had one or more genomic alterations commonly observed in human cancers, including aberrations in copy number (45%), mitochondrial DNA sequence (22%) and gene promoter methylation (90%), although the latter was essentially restricted to 2 of 14 promoters examined. The observation that hESC lines maintained in vitro develop genetic and epigenetic alterations implies that periodic monitoring of these lines will be required before they are used in in vivo applications and that some late-passage hESC lines may be unusable for therapeutic purposes.  相似文献   
18.
Zusammenfassung Nach DDC-Vorbehandlung wurde bei männlichen Ratten eine deutliche Potenzierung der Morphinanalgesie beobachtet. Es konnte nachgewiesen werden, dass dieses Phänomen nicht durch die nach DDC-Gabe auftretende Veränderung des CA-Gehaltes im Gehirn bedingt ist.  相似文献   
19.
The innate immune system senses viral infection by recognizing a variety of viral components (including double-stranded (ds)RNA) and triggers antiviral responses. The cytoplasmic helicase proteins RIG-I (retinoic-acid-inducible protein I, also known as Ddx58) and MDA5 (melanoma-differentiation-associated gene 5, also known as Ifih1 or Helicard) have been implicated in viral dsRNA recognition. In vitro studies suggest that both RIG-I and MDA5 detect RNA viruses and polyinosine-polycytidylic acid (poly(I:C)), a synthetic dsRNA analogue. Although a critical role for RIG-I in the recognition of several RNA viruses has been clarified, the functional role of MDA5 and the relationship between these dsRNA detectors in vivo are yet to be determined. Here we use mice deficient in MDA5 (MDA5-/-) to show that MDA5 and RIG-I recognize different types of dsRNAs: MDA5 recognizes poly(I:C), and RIG-I detects in vitro transcribed dsRNAs. RNA viruses are also differentially recognized by RIG-I and MDA5. We find that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection. Furthermore, RIG-I-/- and MDA5-/- mice are highly susceptible to infection with these respective RNA viruses compared to control mice. Together, our data show that RIG-I and MDA5 distinguish different RNA viruses and are critical for host antiviral responses.  相似文献   
20.
Autophagy is an intracellular bulk degradation process through which a portion of the cytoplasm is delivered to lysosomes to be degraded. Although the primary role of autophagy in many organisms is in adaptation to starvation, autophagy is also thought to be important for normal turnover of cytoplasmic contents, particularly in quiescent cells such as neurons. Autophagy may have a protective role against the development of a number of neurodegenerative diseases. Here we report that loss of autophagy causes neurodegeneration even in the absence of any disease-associated mutant proteins. Mice deficient for Atg5 (autophagy-related 5) specifically in neural cells develop progressive deficits in motor function that are accompanied by the accumulation of cytoplasmic inclusion bodies in neurons. In Atg5-/- cells, diffuse, abnormal intracellular proteins accumulate, and then form aggregates and inclusions. These results suggest that the continuous clearance of diffuse cytosolic proteins through basal autophagy is important for preventing the accumulation of abnormal proteins, which can disrupt neural function and ultimately lead to neurodegeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号