首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   705篇
  免费   7篇
  国内免费   6篇
系统科学   6篇
教育与普及   4篇
理论与方法论   8篇
现状及发展   78篇
研究方法   107篇
综合类   485篇
自然研究   30篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   19篇
  2012年   87篇
  2011年   121篇
  2010年   23篇
  2009年   8篇
  2008年   75篇
  2007年   57篇
  2006年   40篇
  2005年   47篇
  2004年   36篇
  2003年   55篇
  2002年   52篇
  2001年   3篇
  2000年   4篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有718条查询结果,搜索用时 15 毫秒
61.
The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1(+) (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDR(low)/C-KIT(CD117)(neg) population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDR(low)/C-KIT(neg) cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDR(low)/C-KIT(neg) fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.  相似文献   
62.
63.
64.
Hayden EJ  Ferrada E  Wagner A 《Nature》2011,474(7349):92-95
Cryptic variation is caused by the robustness of phenotypes to mutations. Cryptic variation has no effect on phenotypes in a given genetic or environmental background, but it can have effects after mutations or environmental change. Because evolutionary adaptation by natural selection requires phenotypic variation, phenotypically revealed cryptic genetic variation may facilitate evolutionary adaptation. This is possible if the cryptic variation happens to be pre-adapted, or "exapted", to a new environment, and is thus advantageous once revealed. However, this facilitating role for cryptic variation has not been proven, partly because most pertinent work focuses on complex phenotypes of whole organisms whose genetic basis is incompletely understood. Here we show that populations of RNA enzymes with accumulated cryptic variation adapt more rapidly to a new substrate than a population without cryptic variation. A detailed analysis of our evolving RNA populations in genotype space shows that cryptic variation allows a population to explore new genotypes that become adaptive only in a new environment. Our observations show that cryptic variation contains new genotypes pre-adapted to a changed environment. Our results highlight the positive role that robustness and epistasis can have in adaptive evolution.  相似文献   
65.
The first two sections of this paper investigate what Newton could have meant in a now famous passage from “De Graviatione” (hereafter “DeGrav”) that “space is as it were an emanative effect of God.” First it offers a careful examination of the four key passages within DeGrav that bear on this. The paper shows that the internal logic of Newton’s argument permits several interpretations. In doing so, the paper calls attention to a Spinozistic strain in Newton’s thought. Second it sketches four interpretive options: (i) one approach is generic neo-Platonic; (ii) another approach is associated with the Cambridge Platonist, Henry More; a variant on this (ii*) emphasizes that Newton mixes Platonist and Epicurean themes; (iii) a necessitarian approach; (iv) an approach connected with Bacon’s efforts to reformulate a useful notion of form and laws of nature. Hitherto only the second and third options have received scholarly attention in scholarship on DeGrav. The paper offers new arguments to treat Newtonian emanation as a species of Baconian formal causation as articulated, especially, in the first few aphorisms of part two of Bacon’s New Organon. If we treat Newtonian emanation as a species of formal causation then the necessitarian reading can be combined with most of the Platonist elements that others have discerned in DeGrav, especially Newton’s commitment to doctrines of different degrees of reality as well as the manner in which the first existing being ‘transfers’ its qualities to space (as a kind of causa-sui). This can clarify the conceptual relationship between space and its formal cause in Newton as well as Newton’s commitment to the spatial extended-ness of all existing beings. While the first two sections of this paper engage with existing scholarly controversies, in the final section the paper argues that the recent focus on emanation has obscured the importance of Newton’s very interesting claims about existence and measurement in “DeGrav”. The paper argues that according to Newton God and other entities have the same kind of quantities of existence; Newton is concerned with how measurement clarifies the way of being of entities. Newton is not claiming that measurement reveals all aspects of an entity. But if we measure something then it exists as a magnitude in space and as a magnitude in time. This is why in DeGrav Newton’s conception of existence really helps to “lay truer foundations of the mechanical sciences.”  相似文献   
66.
The ubiquitylation of cell-cycle regulatory proteins by the large multimeric anaphase-promoting complex (APC/C) controls sister chromatid segregation and the exit from mitosis. Selection of APC/C targets is achieved through recognition of destruction motifs, predominantly the destruction (D)-box and KEN (Lys-Glu-Asn)-box. Although this process is known to involve a co-activator protein (either Cdc20 or Cdh1) together with core APC/C subunits, the structural basis for substrate recognition and ubiquitylation is not understood. Here we investigate budding yeast APC/C using single-particle electron microscopy and determine a cryo-electron microscopy map of APC/C in complex with the Cdh1 co-activator protein (APC/C(Cdh1)) bound to a D-box peptide at ~10 ? resolution. We find that a combined catalytic and substrate-recognition module is located within the central cavity of the APC/C assembled from Cdh1, Apc10--a core APC/C subunit previously implicated in substrate recognition--and the cullin domain of Apc2. Cdh1 and Apc10, identified from difference maps, create a co-receptor for the D-box following repositioning of Cdh1 towards Apc10. Using NMR spectroscopy we demonstrate specific D-box-Apc10 interactions, consistent with a role for Apc10 in directly contributing towards D-box recognition by the APC/C(Cdh1) complex. Our results rationalize the contribution of both co-activator and core APC/C subunits to D-box recognition and provide a structural framework for understanding mechanisms of substrate recognition and catalysis by the APC/C.  相似文献   
67.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.  相似文献   
68.
Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.  相似文献   
69.
70.
We identified three distinct mutations and six mutant alleles in GDAP1 in three families with axonal Charcot-Marie-Tooth (CMT) neuropathy and vocal cord paresis, which were previously linked to the CMT4A locus on chromosome 8q21.1. These results establish the molecular etiology of CMT4A (MIM 214400) and suggest that it may be associated with both axonal and demyelinating phenotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号