首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13744篇
  免费   265篇
  国内免费   403篇
系统科学   333篇
丛书文集   288篇
教育与普及   239篇
理论与方法论   54篇
现状及发展   3433篇
研究方法   456篇
综合类   9526篇
自然研究   83篇
  2022年   151篇
  2021年   187篇
  2020年   139篇
  2017年   141篇
  2016年   146篇
  2015年   192篇
  2014年   294篇
  2013年   255篇
  2012年   369篇
  2011年   485篇
  2010年   326篇
  2009年   320篇
  2008年   477篇
  2007年   493篇
  2006年   367篇
  2005年   380篇
  2004年   406篇
  2003年   301篇
  2002年   347篇
  2001年   499篇
  2000年   481篇
  1999年   500篇
  1998年   224篇
  1997年   226篇
  1996年   200篇
  1995年   223篇
  1994年   205篇
  1993年   180篇
  1992年   245篇
  1991年   221篇
  1990年   207篇
  1989年   178篇
  1988年   176篇
  1987年   154篇
  1985年   168篇
  1979年   254篇
  1978年   200篇
  1977年   184篇
  1976年   137篇
  1975年   158篇
  1974年   211篇
  1973年   174篇
  1972年   196篇
  1971年   212篇
  1970年   275篇
  1969年   210篇
  1968年   188篇
  1967年   210篇
  1966年   181篇
  1965年   144篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
981.
Vertebrate epithelial appendages are elaborate topological transformations of flat epithelia into complex organs that either protrude out of external (integument) and internal (oral cavity, gut) epithelia, or invaginate into the surrounding mesenchyme. Although they have specific structures and diverse functions, most epithelial appendages share similar developmental stages, including induction, morphogenesis, differentiation and cycling. The roles of the SHH pathway are analyzed in exemplary organs including feather, hair, tooth, tongue papilla, lung and foregut. SHH is not essential for induction and differentiation, but is involved heavily in morphogenetic processes including cell proliferation (size regulation), branching morphogenesis, mesenchymal condensation, fate determination (segmentation), polarizing activities and so on. Through differential activation of these processes by SHH in a spatiotemporal-specific fashion, organs of different shape and size are laid down. During evolution, new links of developmental pathways may occur and novel forms of epithelial appendages may emerge, upon which evolutionary selections can act. Sites of major variations have progressed from the body plan to the limb plan to the epithelial appendage plan. With its powerful morphogenetic activities, the SHH pathway would likely continue to play a major role in the evolution of novel epithelial appendages.  相似文献   
982.
The amyloid β-peptide (Aβ) is a 4-kDa species derived from the amyloid precursor protein, which accumulates in the brains of patients with Alzheimer’s disease. Although we lack full understanding of the etiology and pathogenesis of selective neuron death, considerable data do imply roles for both the toxic Aβ and increased oxidative stress. Another significant observation is the accumulation of abnormal, ubiquitin-conjugated proteins in affected neurons, suggesting dysfunction of the proteasome proteolytic system in these cells. Recent reports have indicated that Aβ can bind and inhibit the proteasome, the major cytoslic protease for degrading damaged and ubiquitin-conjugated proteins. Earlier results from our laboratory showed that moderately oxidized proteins are preferentially recognized and degraded by the proteasome; however, severely oxidized proteins cannot be easily degraded and, instead, inhibit the proteasome. We hypothesized that oxidatively modified Aβ might have a stronger (or weaker) inhibitory effect on the proteasome than does native Aβ. We therefore also investigated the proteasome inhibitory action of Aβ 1–40 (a peptide comprising the first 40 residues of Aβ) modified by the intracellular oxidant hydrogen peroxide, and by the lipid peroxidation product 4-hydroxynonenal (HNE). H2O2 modification of Aβ 1–40 generates a progressively poorer inhibitor of the purified human 20S proteasome. In contrast, HNE modification of Aβ 1–40 generates a progressively more selective and efficient inhibitor of the degradation of fluorogenic peptides and oxidized protein substrates by human 20S proteasome. This interaction may contribute to certain pathological manifestations of Alzheimer’s disease Received 26 September 2000; accepted 26 September 2000  相似文献   
983.
Linkage disequilibrium (LD), or the non-random association of alleles, is poorly understood in the human genome. Population genetic theory suggests that LD is determined by the age of the markers, population history, recombination rate, selection and genetic drift. Despite the uncertainties in determining the relative contributions of these factors, some groups have argued that LD is a simple function of distance between markers. Disease-gene mapping studies and a simulation study gave differing predictions on the degree of LD in isolated and general populations. In view of the discrepancies between theory and experimental observations, we constructed a high-density SNP map of the Xq25-Xq28 region and analysed the male genotypes and haplotypes across this region for LD in three populations. The populations included an outbred European sample (CEPH males) and isolated population samples from Finland and Sardinia. We found two extended regions of strong LD bracketed by regions with no evidence for LD in all three samples. Haplotype analysis showed a paucity of haplotypes in regions of strong LD. Our results suggest that, in this region of the X chromosome, LD is not a monotonic function of the distance between markers, but is more a property of the particular location in the human genome.  相似文献   
984.
985.
A potentially powerful information processing strategy in the brain is to take advantage of the temporal structure of neuronal spike trains. An increase in synchrony within the neural representation of an object or location increases the efficacy of that neural representation at the next synaptic stage in the brain; thus, increasing synchrony is a candidate for the neural correlate of attentional selection. We investigated the synchronous firing of pairs of neurons in the secondary somatosensory cortex (SII) of three monkeys trained to switch attention between a visual task and a tactile discrimination task. We found that most neuron pairs in SII cortex fired synchronously and, furthermore, that the degree of synchrony was affected by the monkey's attentional state. In the monkey performing the most difficult task, 35% of neuron pairs that fired synchronously changed their degree of synchrony when the monkey switched attention between the tactile and visual tasks. Synchrony increased in 80% and decreased in 20% of neuron pairs affected by attention.  相似文献   
986.
Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth   总被引:36,自引:0,他引:36  
Zhu G  Spellman PT  Volpe T  Brown PO  Botstein D  Davis TN  Futcher B 《Nature》2000,406(6791):90-94
  相似文献   
987.
Kupperman E  An S  Osborne N  Waldron S  Stainier DY 《Nature》2000,406(6792):192-195
Coordinated cell migration is essential in many fundamental biological processes including embryonic development, organogenesis, wound healing and the immune response. During organogenesis, groups of cells are directed to specific locations within the embryo. Here we show that the zebrafish miles apart (mil) mutation specifically affects the migration of the heart precursors to the midline. We found that mutant cells transplanted into a wild-type embryo migrate normally and that wild-type cells in a mutant embryo fail to migrate, suggesting that mil may be involved in generating an environment permissive for migration. We isolated mil by positional cloning and show that it encodes a member of the lysosphingolipid G-protein-coupled receptor family. We also show that sphingosine-1-phosphate is a ligand for Mil, and that it activates several downstream signalling events that are not activated by the mutant alleles. These data reveal a new role for lysosphingolipids in regulating cell migration during vertebrate development and provide the first molecular clues into the fusion of the bilateral heart primordia during organogenesis of the heart.  相似文献   
988.
Intimin and its translocated intimin receptor (Tir) are bacterial proteins that mediate adhesion between mammalian cells and attaching and effacing (A/E) pathogens. Enteropathogenic Escherichia coli (EPEC) causes significant paediatric morbidity and mortality world-wide. A related A/E pathogen, enterohaemorrhagic E. coli (EHEC; O157:H7) is one of the most important food-borne pathogens in North America, Europe and Japan. A unique and essential feature of A/E bacterial pathogens is the formation of actin-rich pedestals beneath the intimately adherent bacteria and localized destruction of the intestinal brush border. The bacterial outer membrane adhesin, intimin, is necessary for the production of the A/E lesion and diarrhoea. The A/E bacteria translocate their own receptor for intimin, Tir, into the membrane of mammalian cells using the type III secretion system. The translocated Tir triggers additional host signalling events and actin nucleation, which are essential for lesion formation. Here we describe the the crystal structures of an EPEC intimin carboxy-terminal fragment alone and in complex with the EPEC Tir intimin-binding domain, giving insight into the molecular mechanisms of adhesion of A/E pathogens.  相似文献   
989.
990.
Loder N 《Nature》2000,405(6789):878-880
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号