首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   0篇
  国内免费   1篇
丛书文集   2篇
现状及发展   34篇
研究方法   24篇
综合类   62篇
自然研究   5篇
  2021年   2篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   13篇
  2011年   15篇
  2010年   6篇
  2008年   8篇
  2007年   13篇
  2006年   15篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   7篇
  1999年   1篇
  1992年   1篇
  1981年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1959年   1篇
  1956年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
41.
A six month herpetological survey was undertaken between March and September 2015 on Nosy Komba, an island off of the north-west coast of mainland Madagascar which has undergone considerable anthropogenic modification. A total of 14 species were found that have not been previously recorded on Nosy Komba, bringing the total island diversity to 52 (41 reptiles and 11 frogs). The species assemblage, richness and abundance of four distinct habitat types were compared: closed-canopy forest, disturbed-canopy forest, shade-grown coffee plantation and mixed open plantation. The anthropogenic habitats on Nosy Komba were found to be of high conservation value for reptile species, where species richness and abundance found during surveys was equal to or higher than closed-canopy forest. By contrast, the abundance and species richness for frogs was reduced in anthropogenic habitats, especially in sun-exposed plantations. The forested areas of Nosy Komba contain twelve IUCN threatened species (9 reptiles and 3 frogs). Of these, Uroplatus henkeli, Uroplatus ebenaui, Phelsuma seippi, Zonosaurus subuniclor, Stumpffia psologlossa and Stumpffia pygmaea were also found in shade-grown coffee plantations, demonstrating the conservation value of these anthropogenic environments. Five threatened species on Nosy Komba were found exclusively in forested areas: Brookesia minima, Brookesia ebenaui, Lygodactylus madagascariensis, Rhombophryne testudo and Thamnosophis stumpffi. Our surveys demonstrate the importance of Nosy Komba for conserving regionally endemic and threatened species, and the often under-appreciated value of anthropogenic environments in species conservation, when also coupled with the protection of primary forest.  相似文献   
42.
43.
Sulindac is a non-selective inhibitor of cyclooxygenases (COX) used to treat inflammation and pain. Additionally, non-COX targets may account for the drug’s chemo-preventive efficacy against colorectal cancer and reduced gastrointestinal toxicity. Here, we demonstrate that the pharmacologically active metabolite of sulindac, sulindac sulfide (SSi), targets 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of proinflammatory leukotrienes (LTs). SSi inhibited 5-LO in ionophore A23187- and LPS/fMLP-stimulated human polymorphonuclear leukocytes (IC50 ≈ 8–10 μM). Importantly, SSi efficiently suppressed 5-LO in human whole blood at clinically relevant plasma levels (IC50 = 18.7 μM). SSi was 5-LO-selective as no inhibition of related lipoxygenases (12-LO, 15-LO) was observed. The sulindac prodrug and the other metabolite, sulindac sulfone (SSo), failed to inhibit 5-LO. Mechanistic analysis demonstrated that SSi directly suppresses 5-LO with an IC50 of 20 μM. Together, these findings may provide a novel molecular basis to explain the COX-independent pharmacological effects of sulindac under therapy.  相似文献   
44.
45.
DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.  相似文献   
46.
47.
Freitag J  Ast J  Bölker M 《Nature》2012,485(7399):522-525
  相似文献   
48.
Bacteria have developed mechanisms to communicate and compete with one another in diverse environments. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli. CDI is mediated by the CdiB/CdiA two-partner secretion (TPS) system. CdiB facilitates secretion of the CdiA 'exoprotein' onto the cell surface. An additional small immunity protein (CdiI) protects CDI(+) cells from autoinhibition. The mechanisms by which CDI blocks cell growth and by which CdiI counteracts this growth arrest are unknown. Moreover, the existence of CDI activity in other bacteria has not been explored. Here we show that the CDI growth inhibitory activity resides within the carboxy-terminal region of CdiA (CdiA-CT), and that CdiI binds and inactivates cognate CdiA-CT, but not heterologous CdiA-CT. Bioinformatic and experimental analyses show that multiple bacterial species encode functional CDI systems with high sequence variability in the CdiA-CT and CdiI coding regions. CdiA-CT heterogeneity implies that a range of toxic activities are used during CDI. Indeed, CdiA-CTs from uropathogenic E.?coli and the plant pathogen Dickeya dadantii have different nuclease activities, each providing a distinct mechanism of growth inhibition. Finally, we show that bacteria lacking the CdiA-CT and CdiI coding regions are unable to compete with isogenic wild-type CDI(+) cells both in laboratory media and on a eukaryotic host. Taken together, these results suggest that CDI systems constitute an intricate immunity network with an important function in bacterial competition.  相似文献   
49.
Nanoscale imaging magnetometry with diamond spins under ambient conditions   总被引:1,自引:0,他引:1  
Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques, but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells, and magnetic resonance force microscopy has succeeded in detecting single electrons and small nuclear spin ensembles. However, this technique currently requires cryogenic temperatures, which limit most potential biological applications. Alternatively, single-electron spin states can be detected optically, even at room temperature in some systems. Here we show how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen-vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre-scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single-spin imaging at room temperature is far-reaching. It could lead to the capability to probe biologically relevant spins in living cells.  相似文献   
50.
Exome sequencing has become a powerful and effective strategy for the discovery of genes underlying Mendelian disorders. However, use of exome sequencing to identify variants associated with complex traits has been more challenging, partly because the sample sizes needed for adequate power may be very large. One strategy to increase efficiency is to sequence individuals who are at both ends of a phenotype distribution (those with extreme phenotypes). Because the frequency of alleles that contribute to the trait are enriched in one or both phenotype extremes, a modest sample size can potentially be used to identify novel candidate genes and/or alleles. As part of the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP), we used an extreme phenotype study design to discover that variants in DCTN4, encoding a dynactin protein, are associated with time to first P. aeruginosa airway infection, chronic P. aeruginosa infection and mucoid P. aeruginosa in individuals with cystic fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号