首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3598篇
  免费   50篇
  国内免费   28篇
系统科学   63篇
丛书文集   4篇
教育与普及   3篇
理论与方法论   17篇
现状及发展   1338篇
研究方法   335篇
综合类   1846篇
自然研究   70篇
  2018年   36篇
  2017年   39篇
  2016年   41篇
  2015年   29篇
  2014年   44篇
  2013年   73篇
  2012年   199篇
  2011年   289篇
  2010年   115篇
  2009年   46篇
  2008年   175篇
  2007年   178篇
  2006年   184篇
  2005年   215篇
  2004年   157篇
  2003年   135篇
  2002年   143篇
  2001年   65篇
  2000年   77篇
  1999年   41篇
  1994年   21篇
  1992年   33篇
  1991年   37篇
  1990年   31篇
  1989年   35篇
  1988年   33篇
  1987年   25篇
  1986年   26篇
  1985年   34篇
  1984年   30篇
  1983年   28篇
  1982年   26篇
  1981年   23篇
  1980年   20篇
  1979年   56篇
  1978年   37篇
  1977年   58篇
  1976年   35篇
  1975年   36篇
  1974年   60篇
  1973年   46篇
  1972年   60篇
  1971年   49篇
  1970年   58篇
  1969年   59篇
  1968年   61篇
  1967年   47篇
  1966年   44篇
  1965年   30篇
  1964年   25篇
排序方式: 共有3676条查询结果,搜索用时 15 毫秒
41.
From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.  相似文献   
42.
43.
Striemer CC  Gaborski TR  McGrath JL  Fauchet PM 《Nature》2007,445(7129):749-753
Commercial ultrafiltration and dialysis membranes have broad pore size distributions and are over 1,000 times thicker than the molecules they are designed to separate, leading to poor size cut-off properties, filtrate loss within the membranes, and low transport rates. Nanofabricated membranes have great potential in molecular separation applications by offering more precise structural control, yet transport is also limited by micrometre-scale thicknesses. This limitation can be addressed by a new class of ultrathin nanostructured membranes where the membrane is roughly as thick (approximately 10 nm) as the molecules being separated, but membrane fragility and complex fabrication have prevented the use of ultrathin membranes for molecular separations. Here we report the development of an ultrathin porous nanocrystalline silicon (pnc-Si) membrane using straightforward silicon fabrication techniques that provide control over average pore sizes from approximately 5 nm to 25 nm. Our pnc-Si membranes can retain proteins while permitting the transport of small molecules at rates an order of magnitude faster than existing materials, separate differently sized proteins under physiological conditions, and separate similarly sized molecules carrying different charges. Despite being only 15 nm thick, pnc-Si membranes that are free-standing over 40,000 microm2 can support a full atmosphere of differential pressure without plastic deformation or fracture. By providing efficient, low-loss macromolecule separations, pnc-Si membranes are expected to enable a variety of new devices, including membrane-based chromatography systems and both analytical and preparative microfluidic systems that require highly efficient separations.  相似文献   
44.
45.
The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface-and hence the magnetic structure-for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii.  相似文献   
46.
A second generation human haplotype map of over 3.1 million SNPs   总被引:2,自引:0,他引:2  
We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.  相似文献   
47.
With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号