首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   1篇
现状及发展   19篇
研究方法   15篇
综合类   52篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1966年   1篇
  1955年   1篇
排序方式: 共有86条查询结果,搜索用时 62 毫秒
41.
42.
Zusammenfassung Die Rattenblastocyste synthetisiert, kurz bevor sich die Membrana pellucida auflöst, Nukleinsäuren, wie aus der Aufnahme von Uridin durch die Zellkerne elektronenmikroskopisch und autoradiographisch gezeigt wurde. Bei verzögerter Implantation wird Nukleinsäure in geringerem Ausmass aufgebaut.  相似文献   
43.
44.
Mobilization of a transposon in the rice genome   总被引:29,自引:0,他引:29  
Rice (Oryza sativa L.) is an important crop worldwide and, with the availability of the draft sequence, a useful model for analysing the genome structure of grasses. To practice efficient rice breeding through genetic engineering techniques, it is important to identify the economically important genes in this crop. The use of mobile transposons as gene tags in intact plants is a powerful tool for functional analysis because transposon insertions often inactivate genes. Here we identify an active rice transposon named miniature Ping (mPing) through analysis of the mutability of a slender mutation of the glume-the seed structure that encloses and determines the shape of the grain. The mPing transposon is inserted in the slender glume (slg) mutant allele but not in the wild-type allele. Search of the O. sativa variety Nipponbare genome identified 34 sequences with high nucleotide similarity to mPing, indicating that mPing constitutes a family of transposon elements. Excision of mPing from slg plants results in reversion to a wild-type phenotype. The mobility of the transposon mPing in intact rice plants represents a useful alternative tool for the functional analysis of rice genes.  相似文献   
45.
46.
47.
Gack MU  Shin YC  Joo CH  Urano T  Liang C  Sun L  Takeuchi O  Akira S  Chen Z  Inoue S  Jung JU 《Nature》2007,446(7138):916-920
Retinoic-acid-inducible gene-I (RIG-I; also called DDX58) is a cytosolic viral RNA receptor that interacts with MAVS (also called VISA, IPS-1 or Cardif) to induce type I interferon-mediated host protective innate immunity against viral infection. Furthermore, members of the tripartite motif (TRIM) protein family, which contain a cluster of a RING-finger domain, a B box/coiled-coil domain and a SPRY domain, are involved in various cellular processes, including cell proliferation and antiviral activity. Here we report that the amino-terminal caspase recruitment domains (CARDs) of RIG-I undergo robust ubiquitination induced by TRIM25 in mammalian cells. The carboxy-terminal SPRY domain of TRIM25 interacts with the N-terminal CARDs of RIG-I; this interaction effectively delivers the Lys 63-linked ubiquitin moiety to the N-terminal CARDs of RIG-I, resulting in a marked increase in RIG-I downstream signalling activity. The Lys 172 residue of RIG-I is critical for efficient TRIM25-mediated ubiquitination and for MAVS binding, as well as the ability of RIG-I to induce antiviral signal transduction. Furthermore, gene targeting demonstrates that TRIM25 is essential not only for RIG-I ubiquitination but also for RIG-I-mediated interferon- production and antiviral activity in response to RNA virus infection. Thus, we demonstrate that TRIM25 E3 ubiquitin ligase induces the Lys 63-linked ubiquitination of RIG-I, which is crucial for the cytosolic RIG-I signalling pathway to elicit host antiviral innate immunity.  相似文献   
48.
Inoue D  Ohe M  Kanemori Y  Nobui T  Sagata N 《Nature》2007,446(7139):1100-1104
In vertebrates, unfertilized eggs (or mature oocytes) are arrested at metaphase of meiosis II by a cytoplasmic activity called cytostatic factor (CSF). The classical Mos-MAPK pathway has long been implicated in CSF arrest of vertebrate eggs, but exactly how it exerts CSF activity remains unclear. Recently, Erp1 (also called Emi2), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) required for degradation of the mitotic regulator cyclin B (ref. 5), has also been shown to be a component of CSF in both Xenopus and mice. Erp1 is destroyed on fertilization or egg activation, like Mos. However, despite these similarities the Mos-MAPK (mitogen-activated protein kinase) pathway and Erp1 are thought to act rather independently in CSF arrest. Here, we show that p90rsk, the kinase immediately downstream from Mos-MAPK, directly targets Erp1 for CSF arrest in Xenopus oocytes. Erp1 is synthesized immediately after meiosis I, and the Mos-MAPK pathway or p90rsk is essential for CSF arrest by Erp1. p90rsk can directly phosphorylate Erp1 on Ser 335/Thr 336 both in vivo and in vitro, and upregulates both Erp1 stability and activity. Erp1 is also present in early embryos, but has little CSF activity owing, at least in part, to the absence of p90rsk activity. These results clarify the direct link of the classical Mos-MAPK pathway to Erp1 in meiotic arrest of vertebrate oocytes.  相似文献   
49.
By comparing mammalian genomes, we and others have identified actively transcribed Ty3/gypsy retrotransposon-derived genes with highly conserved DNA sequences and insertion sites. To elucidate the functions of evolutionarily conserved retrotransposon-derived genes in mammalian development, we produced mice that lack one of these genes, Peg10 (paternally expressed 10), which is a paternally expressed imprinted gene on mouse proximal chromosome 6. The Peg10 knockout mice showed early embryonic lethality owing to defects in the placenta. This indicates that Peg10 is critical for mouse parthenogenetic development and provides the first direct evidence of an essential role of an evolutionarily conserved retrotransposon-derived gene in mammalian development.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号