首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17375篇
  免费   45篇
  国内免费   60篇
系统科学   259篇
丛书文集   444篇
教育与普及   36篇
理论与方法论   51篇
现状及发展   7982篇
研究方法   735篇
综合类   7824篇
自然研究   149篇
  2012年   214篇
  2011年   413篇
  2010年   103篇
  2009年   95篇
  2008年   280篇
  2007年   349篇
  2006年   301篇
  2005年   306篇
  2004年   275篇
  2003年   328篇
  2002年   264篇
  2001年   611篇
  2000年   615篇
  1999年   344篇
  1993年   87篇
  1992年   328篇
  1991年   254篇
  1990年   301篇
  1989年   278篇
  1988年   263篇
  1987年   280篇
  1986年   286篇
  1985年   338篇
  1984年   242篇
  1983年   221篇
  1982年   201篇
  1981年   239篇
  1980年   261篇
  1979年   571篇
  1978年   465篇
  1977年   470篇
  1976年   352篇
  1975年   375篇
  1974年   586篇
  1973年   458篇
  1972年   419篇
  1971年   511篇
  1970年   657篇
  1969年   573篇
  1968年   493篇
  1967年   529篇
  1966年   443篇
  1965年   331篇
  1959年   198篇
  1958年   293篇
  1957年   193篇
  1956年   172篇
  1955年   167篇
  1954年   159篇
  1948年   87篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Refsum disease is a rare, inherited neurodegenerative disorder characterized by accumulation of the dietary branched-chain fatty acid phytanic acid in plasma and tissues caused by a defect in the alphaoxidation pathway. The accumulation of phytanic acid is believed to be the main pathophysiological cause of the disease. However, the exact mechanism(s) by which phytanic acid exerts its toxicity have not been resolved. In this study, the effect of phytanic acid on mitochondrial respiration was investigated. The results show that in digitonin-permeabilized fibroblasts, phytanic acid decreases ATP synthesis, whereas substrate oxidation per se is not affected. Importantly, studies in intact fibroblasts revealed that phytanic acid decreases both the mitochondrial membrane potential and NAD(P)H autofluorescence. Taken together, the results described here show that unesterified phytanic acid exerts its toxic effect mainly through its protonophoric action, at least in human skin fibroblasts. Received 4 August 2007; received after revision 26 September 2007; accepted 10 October 2007 J. C. Komen, F. Distelmaier: These authors contributed equally to this work.  相似文献   
172.
Glycolysis is an evolutionary conserved metabolic pathway that provides small amounts of energy in the form of ATP when compared to other pathways such as oxidative phosphorylation or fatty acid oxidation. The ATP levels inside metabolically active cells are not constant and the local ATP level will depend on the site of production as well as the respective rates of ATP production, diffusion and consumption. Membrane ion transporters (pumps, exchangers and channels) are located at sites distal to the major sources of ATP formation (the mitochondria). We review evidence that the glycolytic complex is associated with membranes; both at the plasmalemma and with membranes of the endo/sarcoplasmic reticular network. We examine the evidence for the concept that many of the ion transporters are regulated preferentially by the glycolytic process. These include the Na+/K+-ATPase, the H+-ATPase, various types of Ca2+-ATPases, the Na+/H+ exchanger, the ATP-sensitive K+ channel, cation channels, Na+ channels, Ca2+ channels and other channels involved in intracellular Ca2+ homeostasis. Regulation of these pumps, exchangers and ion channels by the glycolytic process has important consequences in a variety of physiological and pathophysiological processes, and a better understanding of this mode of regulation may have important consequences for developing future strategies in combating disease and developing novel therapeutic approaches. Received 20 July 2007; received after revision 30 July 2007; accepted 17 August 2007  相似文献   
173.
The metabolism of all-trans- and 9-cis-retinol/ retinaldehyde has been investigated with focus on the activities of human, mouse and rat alcohol dehydrogenase 2 (ADH2), an intriguing enzyme with apparently different functions in human and rodents. Kinetic constants were determined with an HPLC method and a structural approach was implemented by in silico substrate dockings. For human ADH2, the determined Km values ranged from 0.05 to 0.3 μM and kcat values from 2.3 to 17.6 min−1, while the catalytic efficiency for 9-cis-retinol showed the highest value for any substrate. In contrast, poor activities were detected for the rodent enzymes. A mouse ADH2 mutant (ADH2Pro47His) was studied that resembles the human ADH2 setup. This mutation increased the retinoid activity up to 100-fold. The Km values of human ADH2 are the lowest among all known human retinol dehydrogenases, which clearly support a role in hepatic retinol oxidation at physiological concentrations. Received 12 October 2006; received after revision 6 December 2006; accepted 8 January 2007  相似文献   
174.
Genetic studies of diseases   总被引:1,自引:0,他引:1  
The biological system is a complex physicochemical system consisting of numerous dynamic networks of biochemical reactions and signaling interactions between cellular components. This complexity makes it virtually unanalyzable by traditional methods. Hence, biological networks have been developed as a platform for integrating information from high- to low-throughput experiments for analysis of biological systems. The network analysis approach is vital for successful quantitative modeling of biological systems. The numerous online pathway databases vary widely in coverage and representation of biological processes. An integrated network-based information system for querying, visualization and analysis promised successful integration of data on a large scale. Such integrated systems will greatly facilitate the understanding of biological interactions and experimental verification.  相似文献   
175.
176.
177.
Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination-derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.  相似文献   
178.
Autosomal recessive osteopetrosis is usually associated with normal or elevated numbers of nonfunctional osteoclasts. Here we report mutations in the gene encoding RANKL (receptor activator of nuclear factor-KB ligand) in six individuals with autosomal recessive osteopetrosis whose bone biopsy specimens lacked osteoclasts. These individuals did not show any obvious defects in immunological parameters and could not be cured by hematopoietic stem cell transplantation; however, exogenous RANKL induced formation of functional osteoclasts from their monocytes, suggesting that they could, theoretically, benefit from exogenous RANKL administration.  相似文献   
179.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   
180.
We have genotyped 14,436 nonsynonymous SNPs (nsSNPs) and 897 major histocompatibility complex (MHC) tag SNPs from 1,000 independent cases of ankylosing spondylitis (AS), autoimmune thyroid disease (AITD), multiple sclerosis (MS) and breast cancer (BC). Comparing these data against a common control dataset derived from 1,500 randomly selected healthy British individuals, we report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirmation of the previously reported association of AITD with TSHR and FCRL3. These findings, enabled in part by increased statistical power resulting from the expansion of the control reference group to include individuals from the other disease groups, highlight notable new possibilities for autoimmune regulation and suggest that IL23R may be a common susceptibility factor for the major 'seronegative' diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号