首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
  国内免费   1篇
现状及发展   16篇
研究方法   10篇
综合类   39篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   7篇
  2002年   3篇
  1999年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1980年   2篇
  1975年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
61.
Germline gain-of-function mutations in RAF1 cause Noonan syndrome   总被引:11,自引:0,他引:11  
Noonan syndrome is characterized by short stature, facial dysmorphia and a wide spectrum of congenital heart defects. Mutations of PTPN11, KRAS and SOS1 in the RAS-MAPK pathway cause approximately 60% of cases of Noonan syndrome. However, the gene(s) responsible for the remainder are unknown. We have identified five different mutations in RAF1 in ten individuals with Noonan syndrome; those with any of four mutations causing changes in the CR2 domain of RAF1 had hypertrophic cardiomyopathy (HCM), whereas affected individuals with mutations leading to changes in the CR3 domain did not. Cells transfected with constructs containing Noonan syndrome-associated RAF1 mutations showed increased in vitro kinase and ERK activation, and zebrafish embryos with morpholino knockdown of raf1 demonstrated the need for raf1 for the development of normal myocardial structure and function. Thus, our findings implicate RAF1 gain-of-function mutations as a causative agent of a human developmental disorder, representing a new genetic mechanism for the activation of the MAPK pathway.  相似文献   
62.
63.
64.
Kaneda M  Okano M  Hata K  Sado T  Tsujimoto N  Li E  Sasaki H 《Nature》2004,429(6994):900-903
Imprinted genes are epigenetically marked during gametogenesis so that they are exclusively expressed from either the paternal or the maternal allele in offspring. Imprinting prevents parthenogenesis in mammals and is often disrupted in congenital malformation syndromes, tumours and cloned animals. Although de novo DNA methyltransferases of the Dnmt3 family are implicated in maternal imprinting, the lethality of Dnmt3a and Dnmt3b knockout mice has precluded further studies. We here report the disruption of Dnmt3a and Dnmt3b in germ cells, with their preservation in somatic cells, by conditional knockout technology. Offspring from Dnmt3a conditional mutant females die in utero and lack methylation and allele-specific expression at all maternally imprinted loci examined. Dnmt3a conditional mutant males show impaired spermatogenesis and lack methylation at two of three paternally imprinted loci examined in spermatogonia. By contrast, Dnmt3b conditional mutants and their offspring show no apparent phenotype. The phenotype of Dnmt3a conditional mutants is indistinguishable from that of Dnmt3L knockout mice, except for the discrepancy in methylation at one locus. These results indicate that both Dnmt3a and Dnmt3L are required for methylation of most imprinted loci in germ cells, but also suggest the involvement of other factors.  相似文献   
65.
Metal-organic microporous materials (MOMs) have attracted wide scientific attention owing to their unusual structure and properties, as well as commercial interest due to their potential applications in storage, separation and heterogeneous catalysis. One of the advantages of MOMs compared to other microporous materials, such as activated carbons, is their ability to exhibit a variety of pore surface properties such as hydrophilicity and chirality, as a result of the controlled incorporation of organic functional groups into the pore walls. This capability means that the pore surfaces of MOMs could be designed to adsorb specific molecules; but few design strategies for the adsorption of small molecules have been established so far. Here we report high levels of selective sorption of acetylene molecules as compared to a very similar molecule, carbon dioxide, onto the functionalized surface of a MOM. The acetylene molecules are held at a periodic distance from one another by hydrogen bonding between two non-coordinated oxygen atoms in the nanoscale pore wall of the MOM and the two hydrogen atoms of the acetylene molecule. This permits the stable storage of acetylene at a density 200 times the safe compression limit of free acetylene at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号