首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1145篇
  免费   6篇
  国内免费   7篇
系统科学   16篇
丛书文集   1篇
教育与普及   6篇
理论与方法论   16篇
现状及发展   123篇
研究方法   202篇
综合类   669篇
自然研究   125篇
  2021年   4篇
  2018年   2篇
  2017年   5篇
  2016年   10篇
  2015年   7篇
  2014年   15篇
  2013年   15篇
  2012年   93篇
  2011年   236篇
  2010年   39篇
  2009年   5篇
  2008年   92篇
  2007年   98篇
  2006年   96篇
  2005年   85篇
  2004年   92篇
  2003年   75篇
  2002年   78篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1978年   5篇
  1976年   3篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
  1969年   6篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
  1958年   1篇
  1948年   1篇
  1946年   2篇
排序方式: 共有1158条查询结果,搜索用时 15 毫秒
881.
滚动轴承超精硬切削参数的优选方法体系   总被引:2,自引:1,他引:2  
基于获得最长的滚动接触疲劳寿命,提出了滚动轴承耦合具体服役工况的超精硬切削参数的优选方法体系.根据该体系优选的切削参数,在满足零件精度要求的前提下,能够使特定外载荷谱下的零件表面残余应力与赫兹接触应力进行合理匹配,使失效点处应力为最小,实现滚动轴承理论上的最长疲劳寿命.以滚动轴承的典型工况为例进行验算.结果表明,如果硬切削参数的优化结果仅仅以表面精度为约束条件,而不依据本文提出的方法体系,将导致零件的滚动接触疲劳寿命相差约35倍.  相似文献   
882.
883.
Wan YY  Flavell RA 《Nature》2007,445(7129):766-770
The naturally occurring regulatory T cell (T(r)) is the pivotal cell type that maintains self-tolerance and exerts active immune suppression. The development and function of T(r) cells is controlled by Foxp3 (refs 1, 2), a lack of which results in loss of T(r) cells and massive multi-organ autoimmunity in scurfy mice and IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) patients. It is generally thought that, through a binary mechanism, Foxp3 expression serves as an on-and-off switch to regulate positively the physiology of T(r) cells; however, emerging evidence associates decreased Foxp3 expression in T(r) cells with various immune disorders. We hypothesized that Foxp3 regulates T(r) cell development and function in a dose-dependent, non-binary manner, and that decreased Foxp3 expression can cause immune disease. Here, by generating a mouse model in which endogenous Foxp3 gene expression is attenuated in T(r) cells, we show that decreased Foxp3 expression results in the development of an aggressive autoimmune syndrome similar to that of scurfy mice, but does not affect thymic development, homeostatic expansion/maintenance or transforming-growth-factor-beta-induced de novo generation of Foxp3-expressing cells. The immune-suppressive activities of T cells with attenuated Foxp3 expression were nearly abolished in vitro and in vivo, whereas their anergic properties in vitro were maintained. This was accompanied by decreased expression of T(r) cell 'signature genes'. Notably, T cells expressing decreased Foxp3 preferentially became T-helper 2 (T(h)2)-type effectors even in a T(h)1-polarizing environment. These cells instructed T(h)2 differentiation of conventional T cells, which contributed to the immune diseases observed in these mice. Thus, decreased Foxp3 expression causes immune disease by subverting the suppressive function of T(r) cells and converting T(r) cells into effector cells; these findings are important for understanding the regulation of T(r) cell function and the aetiology of various human immune diseases.  相似文献   
884.
Proteorhodopsins are bacterial light-dependent proton pumps. Their discovery within genomic material from uncultivated marine bacterioplankton caused considerable excitement because it indicated a potential phototrophic function within these organisms, which had previously been considered strictly chemotrophic. Subsequent studies established that sequences encoding proteorhodopsin are broadly distributed throughout the world's oceans. Nevertheless, the role of proteorhodopsins in native marine bacteria is still unknown. Here we show, from an analysis of the complete genomes of three marine Flavobacteria, that cultivated bacteria in the phylum Bacteroidetes, one of the principal components of marine bacterioplankton, contain proteorhodopsin. Moreover, growth experiments in both natural and artificial seawater (low in labile organic matter, which is typical of the world's oceans) establish that exposure to light results in a marked increase in the cell yield of one such bacterium (Dokdonia sp. strain MED134) when compared with cells grown in darkness. Thus, our results show that the phototrophy conferred by proteorhodopsin can provide critical amounts of energy, not only for respiration and maintenance but also for active growth of marine bacterioplankton in their natural environment.  相似文献   
885.
886.
In addition to influencing climatic conditions directly through radiative forcing, increasing carbon dioxide concentration influences the climate system through its effects on plant physiology. Plant stomata generally open less widely under increased carbon dioxide concentration, which reduces transpiration and thus leaves more water at the land surface. This driver of change in the climate system, which we term 'physiological forcing', has been detected in observational records of increasing average continental runoff over the twentieth century. Here we use an ensemble of experiments with a global climate model that includes a vegetation component to assess the contribution of physiological forcing to future changes in continental runoff, in the context of uncertainties in future precipitation. We find that the physiological effect of doubled carbon dioxide concentrations on plant transpiration increases simulated global mean runoff by 6 per cent relative to pre-industrial levels; an increase that is comparable to that simulated in response to radiatively forced climate change (11 +/- 6 per cent). Assessments of the effect of increasing carbon dioxide concentrations on the hydrological cycle that only consider radiative forcing will therefore tend to underestimate future increases in runoff and overestimate decreases. This suggests that freshwater resources may be less limited than previously assumed under scenarios of future global warming, although there is still an increased risk of drought. Moreover, our results highlight that the practice of assessing the climate-forcing potential of all greenhouse gases in terms of their radiative forcing potential relative to carbon dioxide does not accurately reflect the relative effects of different greenhouse gases on freshwater resources.  相似文献   
887.
888.
889.
890.
A study of biocompatibility and corrosion of both metallic magnesium(Mg) and a magnesium alloy containing 1% calcium(Mg–Ca) were investigated in in vitro culture conditions with and without the presence of bone marrow derived human mesenchymal stem cells(h MSCs).Chemical analysis of the degraded samples was performed using XRD and FEGSEM. The results from the XRD analysis strongly suggested that crystalline phase of magnesium carbonate was present on the surface of both the Mg and Mg–Ca samples. Flame absorption spectrometry was used to analyse the release of magnesium and calcium ions into the cell culture medium. Magnesium concentration was kept consistently at a level ranging from 40 to 80 m M for both Mg and Mg–Ca samples. No cell growth was observed when in direct contact with the metals apart from a few cells observed at the bottom of culture plate containing Mg–Ca alloy. In general, in vitro study of corrosion of Mg–Ca in a biologicallysimulated environment using cell culture medium with the presence of h MSCs demonstrated close resemblances to in vivo corrosion. Although in vitro corrosion of Mg–Ca revealed slow corrosion rate and no immediate cytotoxicity effects to h MSCs, its corrosion rate was still too high to achieve normal stem cell growth when cells and alloys were cultured in vitro in direct contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号