首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   0篇
  国内免费   1篇
现状及发展   27篇
研究方法   15篇
综合类   77篇
自然研究   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   6篇
  2011年   9篇
  2010年   1篇
  2008年   11篇
  2007年   4篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   7篇
  1977年   2篇
  1975年   5篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1970年   5篇
  1969年   2篇
  1968年   1篇
  1967年   4篇
  1966年   3篇
  1965年   1篇
  1956年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
101.
Hox genes in brachiopods and priapulids and protostome evolution.   总被引:39,自引:0,他引:39  
Understanding the early evolution of animal body plans requires knowledge both of metazoan phylogeny and of the genetic and developmental changes involved in the emergence of particular forms. Recent 18S ribosomal RNA phylogenies suggest a three-branched tree for the Bilateria comprising the deuterostomes and two great protostome clades, the lophotrochozoans and ecdysozoans. Here, we show that the complement of Hox genes in critical protostome phyla reflects these phylogenetic relationships and reveals the early evolution of developmental regulatory potential in bilaterians. We have identified Hox genes that are shared by subsets of protostome phyla. These include a diverged pair of posterior (Abdominal-B-like) genes in both a brachiopod and a polychaete annelid, which supports the lophotrochozoan assemblage, and a distinct posterior Hox gene shared by a priapulid, a nematode and the arthropods, which supports the ecdysozoan clade. The ancestors of each of these two major protostome lineages had a minimum of eight to ten Hox genes. The major period of Hox gene expansion and diversification thus occurred before the radiation of each of the three great bilaterian clades.  相似文献   
102.
Most patients with acute myeloid leukaemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level. To determine the mutational spectrum associated with relapse, we sequenced the primary tumour and relapse genomes from eight AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (for example, WAC, SMC3, DIS3, DDX41 and DAXX) in AML, we also found two major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumour gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumour mutations in all eight cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions.  相似文献   
103.
Kim SE  Coste B  Chadha A  Cook B  Patapoutian A 《Nature》2012,483(7388):209-212
Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals. Degenerin/epithelial sodium channel (DEG/ENaC) family members are mechanotransducers in C. elegans and potentially in D. melanogaster; however, a direct role of its mammalian homologues in sensing mechanical force has not been shown. Recently, Piezo1 (also known as Fam38a) and Piezo2 (also known as Fam38b) were identified as components of mechanically activated channels in mammals. The Piezo family are evolutionarily conserved transmembrane proteins. It is unknown whether they function in mechanical sensing in vivo and, if they do, which mechanosensory modalities they mediate. Here we study the physiological role of the single Piezo member in D. melanogaster (Dmpiezo; also known as CG8486). Dmpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts. Behavioural responses to noxious mechanical stimuli were severely reduced in Dmpiezo knockout larvae, whereas responses to another noxious stimulus or touch were not affected. Knocking down Dmpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of Dmpiezo in these same neurons rescued the phenotype of the constitutive Dmpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a Dmpiezo-dependent, mechanically activated current. Finally, we found that Dmpiezo and ppk function in parallel pathways in ppk-positive cells, and that mechanical nociception is abolished in the absence of both channels. These data demonstrate the physiological relevance of the Piezo family in mechanotransduction in vivo, supporting a role of Piezo proteins in mechanosensory nociception.  相似文献   
104.
Résumé En employant les méthodes de la production d'oxygène et de l'assimilation du14C, on a estimé la productivité primaire de l'algue,Caulerpa prolifera, in situ à profondeurs variés aux îles Canaries. On a jugé les mérites respectives des 2 techniques et a comparé les résultats avec ceux des autres auteurs.

This work is part of a programme of investigation of the ecological distribution and primary productivity of benthic marine macrophytes in the Canary Island region.  相似文献   
105.
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ~94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.  相似文献   
106.
D G Wilkinson  S Bhatt  M Cook  E Boncinelli  R Krumlauf 《Nature》1989,341(6241):405-409
The vertebrate hindbrain develops in a segmental pattern, with distinctive groups of neurons originating from different segments. We report here that members of the Hox-2 cluster of murine homoeobox genes are expressed in segment-specific patterns in the developing hindbrain, with successive genes having boundaries at two-segment intervals. These data indicate that Hox genes specify segment phenotype, a role analogous to that of their Drosophila homologues.  相似文献   
107.
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods, but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal. Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that--together with previously published results--show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition approximately 14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration. We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic, which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir, but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.  相似文献   
108.
Recently, RAD51C mutations were identified in families with breast and ovarian cancer. This observation prompted us to investigate the role of RAD51D in cancer susceptibility. We identified eight inactivating RAD51D mutations in unrelated individuals from 911 breast-ovarian cancer families compared with one inactivating mutation identified in 1,060 controls (P = 0.01). The association found here was principally with ovarian cancer, with three mutations identified in the 59 pedigrees with three or more individuals with ovarian cancer (P = 0.0005). The relative risk of ovarian cancer for RAD51D mutation carriers was estimated to be 6.30 (95% CI 2.86-13.85, P = 4.8 × 10(-6)). By contrast, we estimated the relative risk of breast cancer to be 1.32 (95% CI 0.59-2.96, P = 0.50). These data indicate that RAD51D mutation testing may have clinical utility in individuals with ovarian cancer and their families. Moreover, we show that cells deficient in RAD51D are sensitive to treatment with a PARP inhibitor, suggesting a possible therapeutic approach for cancers arising in RAD51D mutation carriers.  相似文献   
109.
110.
Three-dimensional structure of calmodulin   总被引:8,自引:0,他引:8  
The three-dimensional structure of calmodulin has been determined crystallographically at 3.0 A resolution. The molecule consists of two globular lobes connected by a long exposed alpha-helix. Each lobe binds two calcium ions through helix-loop-helix domains similar to those of other calcium-binding proteins. The long helix between the lobes may be involved in interactions of calmodulin with drugs and various proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号