首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   0篇
  国内免费   1篇
系统科学   7篇
丛书文集   1篇
教育与普及   1篇
理论与方法论   2篇
现状及发展   37篇
研究方法   74篇
综合类   101篇
自然研究   7篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2013年   5篇
  2012年   19篇
  2011年   32篇
  2010年   13篇
  2009年   1篇
  2008年   20篇
  2007年   16篇
  2006年   22篇
  2005年   15篇
  2004年   19篇
  2003年   15篇
  2002年   12篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
  1992年   1篇
  1989年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1967年   1篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有230条查询结果,搜索用时 31 毫秒
41.
Auditory neuropathy is a particular type of hearing impairment in which neural transmission of the auditory signal is impaired, while cochlear outer hair cells remain functional. Here we report on DFNB59, a newly identified gene on chromosome 2q31.1-q31.3 mutated in four families segregating autosomal recessive auditory neuropathy. DFNB59 encodes pejvakin, a 352-residue protein. Pejvakin is a paralog of DFNA5, a protein of unknown function also involved in deafness. By immunohistofluorescence, pejvakin is detected in the cell bodies of neurons of the afferent auditory pathway. Furthermore, Dfnb59 knock-in mice, homozygous for the R183W variant identified in one DFNB59 family, show abnormal auditory brainstem responses indicative of neuronal dysfunction along the auditory pathway. Unlike previously described sensorineural deafness genes, all of which underlie cochlear cell pathologies, DFNB59 is the first human gene implicated in nonsyndromic deafness due to a neuronal defect.  相似文献   
42.
Three gene families that rearrange during the somatic development of T cells have been identified in the murine genome. Two of these gene families (alpha and beta) encode subunits of the antigen-specific T-cell receptor and are also present in the human genome. The third gene family, designated here as the gamma-chain gene family, is rearranged in murine cytolytic T cells but not in most helper T cells. Here we present evidence that the human genome also contains gamma-chain genes that undergo somatic rearrangement in leukaemia-derived T cells. Murine gamma-chain genes appear to be encoded in gene segments that are analogous to the immunoglobulin gene variable, constant and joining segments. There are two closely related constant-region gene segments in the human genome. One of the constant-region genes is deleted in all three T-cell leukaemias that we have studied. The two constant-region gamma-chain genes reside on the short arm of chromosome 7 (7p15); this region is involved in chromosomal rearrangements identified in T cells from individuals with the immunodeficiency syndrome ataxia telangiectasia and observed only rarely in routine cytogenetic analyses of normal individuals. This region is also a secondary site of beta-chain gene hybridization.  相似文献   
43.
The gamma-chain genes are encoded by immunoglobulin-like gene segments in germline DNA which rearrange during the somatic development of T cells to form an active gene. The protein produced by these genes has not been identified and the diversity of the proteins that the genes can express has not been determined. We expect that the diversity of expressed gamma-chains is produced by the same three mechanisms that produce diversity of other immunoglobulin-like genes: (1) germline variable (V) and joining (J) region repertoires; (2) somatic mutation; and (3) junctional diversity. To define the contribution of each of these mechanisms to the generation of gamma-chain diversity, several gamma-chain complementary clones and rearranged gamma-chain genes have been characterized. Most of these clones seem to encode a defective gamma-chain, the variable- and constant-region portions being joined such that they would not be translated in the same reading frame. Here we report that the germline J-region diversity of the human T-cell gamma-chain is very limited and that somatic mutation does not contribute to the diversity of the gamma-chains encoded by the cloned segments. However, the junctional diversity of these gamma-chain genes is extensive. We suggest that N sequences (template-independent sequences) have been inserted enzymatically into all of the gamma-chain genes characterized.  相似文献   
44.
Many functionally important cellular peptides and proteins, including hormones, neuropeptides, and growth factors, are synthesized as inactive precursor polypeptides, which require post-translational proteolytic processing to become biologically active polypeptides. This is achieved by the action of a relatively small number of proteases that belong to a family of seven subtilisin-like proprotein convertases (PCs) including furin. In view of this, this review focuses on the importance of privileged secondary structures and of given amino acid residues around basic cleavage sites in substrate recognition by these endoproteases. In addition to their participation in normal cell functions, PCs are crucial for the initiation and progress of many important diseases. Hence, these proteases constitute potential drug targets in medicine. Accordingly, this review also discusses the approaches used to shed light on the cleavage preference and the substrate specificity of the PCs, a prerequisite to select which PCs are promising drug targets in each disease.  相似文献   
45.
46.
47.
A primitive Y chromosome in papaya marks incipient sex chromosome evolution   总被引:2,自引:0,他引:2  
Liu Z  Moore PH  Ma H  Ackerman CM  Ragiba M  Yu Q  Pearl HM  Kim MS  Charlton JW  Stiles JI  Zee FT  Paterson AH  Ming R 《Nature》2004,427(6972):348-352
Many diverse systems for sex determination have evolved in plants and animals. One involves physically distinct (heteromorphic) sex chromosomes (X and Y, or Z and W) that are homozygous in one sex (usually female) and heterozygous in the other (usually male). Sex chromosome evolution is thought to involve suppression of recombination around the sex determination genes, rendering permanently heterozygous a chromosomal region that may then accumulate deleterious recessive mutations by Muller's ratchet, and fix deleterious mutations by hitchhiking as nearby favourable mutations are selected on the Y chromosome. Over time, these processes may cause the Y chromosome to degenerate and to diverge from the X chromosome over much of its length; for example, only 5% of the human Y chromosome still shows X-Y recombination. Here we show that papaya contains a primitive Y chromosome, with a male-specific region that accounts for only about 10% of the chromosome but has undergone severe recombination suppression and DNA sequence degeneration. This finding provides direct evidence for the origin of sex chromosomes from autosomes.  相似文献   
48.
Taxonomy Based modeling was applied to describe drivers’ mental models of variable message signs (VMS’s) displayed on expressways. Progress in road telematics has made it possible to introduce variable message signs (VMS’s). Sensors embedded in the carriageway every 500m record certain variables (speed, flow rate, etc.) that are transformed in real time into “driving times” to a given destination if road conditions do not change. VMS systems are auto-regulative Man-Machine (AMMI) systems which incorporate a model of the user: if the traffic flow is too high, then drivers should choose alternative routes. In so doing, the traffic flow should decrease. The model of the user is based on suppositions such as: people do not like to waste time, they fully understand the displayed messages, they trust the displayed values, they know of alternative routes. However, people also have a model of the way the system functions. And if they do not believe the contents of the message, they will not act as expected. We collected data through interviews with drivers using the critical incidents technique (Flanagan, 1985). Results show that the mental models that drivers have of the way the VMS system works are various but not numerous and that most of them differ from the“ideal expert” mental model. It is clear that users don’t have an adequate model of how the VMS system works and that VMS planners have a model of user behaviour that does not correspond to the behaviour of the drivers we interviewed. Finally, Taxonomy Based Modeling is discussed as a tool for mental model remediation.  相似文献   
49.
The whirler mouse mutant (wi) does not respond to sound stimuli, and detailed ultrastructural analysis of sensory hair cells in the organ of Corti of the inner ear indicates that the whirler gene encodes a protein involved in the elongation and maintenance of stereocilia in both inner hair cells (IHCs) and outer hair cells (OHCs). BAC-mediated transgene correction of the mouse phenotype and mutation analysis identified the causative gene as encoding a novel PDZ protein called whirlin. The gene encoding whirlin also underlies the human autosomal recessive deafness locus DFNB31. In the mouse cochlea, whirlin is expressed in the sensory IHC and OHC stereocilia. Our findings suggest that this novel PDZ domain-containing molecule acts as an organizer of submembranous molecular complexes that control the coordinated actin polymerization and membrane growth of stereocilia.  相似文献   
50.
Although advances have been made in understanding cell differentiation, only rudimentary knowledge exists concerning how differentiated cells form tissues and organs. We studied liver organogenesis because the cell and tissue architecture of this organ is well defined. Approximately 60% of the adult liver consists of hepatocytes that are arranged as single-cell anastomosing plates extending from the portal region of the liver lobule toward the central vein. The basal surface of the hepatocytes is separated from adjacent sinusoidal endothelial cells by the space of Disse, where the exchange of substances between serum and hepatocytes takes place. The hepatocyte's apical surface forms bile canaliculi that transport bile to the hepatic ducts. Proper liver architecture is crucial for hepatic function and is commonly disrupted in disease states, including cirrhosis and hepatitis. Here we report that hepatocyte nuclear factor 4alpha (Hnf4alpha) is essential for morphological and functional differentiation of hepatocytes, accumulation of hepatic glycogen stores and generation of a hepatic epithelium. We show that Hnf4alpha is a dominant regulator of the epithelial phenotype because its ectopic expression in fibroblasts induces a mesenchymal-to-epithelial transition. Most importantly, the morphogenetic parameters controlled by Hnf4alpha in hepatocytes are essential for normal liver architecture, including the organization of the sinusoidal endothelium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号