首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27564篇
  免费   95篇
  国内免费   111篇
系统科学   121篇
丛书文集   451篇
教育与普及   36篇
理论与方法论   90篇
现状及发展   12103篇
研究方法   1259篇
综合类   13241篇
自然研究   469篇
  2013年   214篇
  2012年   422篇
  2011年   889篇
  2010年   172篇
  2008年   488篇
  2007年   596篇
  2006年   531篇
  2005年   567篇
  2004年   614篇
  2003年   495篇
  2002年   529篇
  2001年   860篇
  2000年   823篇
  1999年   585篇
  1992年   556篇
  1991年   386篇
  1990年   420篇
  1989年   406篇
  1988年   403篇
  1987年   413篇
  1986年   454篇
  1985年   580篇
  1984年   403篇
  1983年   333篇
  1982年   294篇
  1981年   319篇
  1980年   370篇
  1979年   869篇
  1978年   678篇
  1977年   652篇
  1976年   521篇
  1975年   513篇
  1974年   771篇
  1973年   641篇
  1972年   704篇
  1971年   763篇
  1970年   1071篇
  1969年   840篇
  1968年   723篇
  1967年   747篇
  1966年   710篇
  1965年   529篇
  1964年   180篇
  1959年   267篇
  1958年   525篇
  1957年   361篇
  1956年   279篇
  1955年   255篇
  1954年   297篇
  1948年   186篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A-H (refs 2-10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding gamma-(ref. 14), alpha-(ref. 5), beta-(refs 6,7) and delta (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C-F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11-12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11-12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.  相似文献   
973.
Genes specifically expressed in the inner ear are candidates to underlie hereditary nonsyndromic deafness. The gene Otog has been isolated from a mouse subtractive cDNA cochlear library. It encodes otogelin, an N-glycosylated protein that is present in the acellular membranes covering the six sensory epithelial patches of the inner ear: in the cochlea (the auditory sensory organ), the tectorial membrane (TM) over the organ of Corti; and in the vestibule (the balance sensory organ), the otoconial membranes over the utricular and saccular maculae as well as the cupulae over the cristae ampullares of the three semi-circular canals. These membranes are involved in the mechanotransduction process. Their movement, which is induced by sound in the cochlea or acceleration in the vestibule, results in the deflection of the stereocilia bundle at the apex of the sensory hair cells, which in turn opens the mechanotransduction channels located at the tip of the stereo-cilia. We sought to elucidate the role of otogelin in the auditory and vestibular functions by generating mice with a targeted disruption of Otog. In Otog-/- mice, both the vestibular and the auditory functions were impaired. Histological analysis of these mutants demonstrated that in the vestibule, otogelin is required for the anchoring of the otoconial membranes and cupulae to the neuroepithelia. In the cochlea, ultrastructural analysis of the TM indicated that otogelin is involved in the organization of its fibrillar network. Otogelin is likely to have a role in the resistance of this membrane to sound stimulation. These results support OTOG as a possible candidate gene for a human nonsyndromic form of deafness.  相似文献   
974.
975.
976.
Familial expansile osteolysis (FEO, MIM 174810) is a rare, autosomal dominant bone disorder characterized by focal areas of increased bone remodelling. The osteolytic lesions, which develop usually in the long bones during early adulthood, show increased osteoblast and osteoclast activity. Our previous linkage studies mapped the gene responsible for FEO to an interval of less than 5 cM between D18S64 and D18S51 on chromosome 18q21.2-21.3 in a large Northern Irish family. The gene encoding receptor activator of nuclear factor-kappa B (RANK; ref. 5), TNFRSF11A, maps to this region. RANK is essential in osteoclast formation. We identified two heterozygous insertion mutations in exon 1 of TNFRSF11A in affected members of four families with FEO or familial Paget disease of bone (PDB). One was a duplication of 18 bases and the other a duplication of 27 bases, both of which affected the signal peptide region of the RANK molecule. Expression of recombinant forms of the mutant RANK proteins revealed perturbations in expression levels and lack of normal cleavage of the signal peptide. Both mutations caused an increase in RANK-mediated nuclear factor-kappaB (NF-kappaB) signalling in vitro, consistent with the presence of an activating mutation.  相似文献   
977.
DNA mismatch repair is important because of its role in maintaining genomic integrity and its association with hereditary non-polyposis colon cancer (HNPCC). To identify new human mismatch repair proteins, we probed nuclear extracts with the conserved carboxy-terminal MLH1 interaction domain. Here we describe the cloning and complete genomic sequence of MLH3, which encodes a new DNA mismatch repair protein that interacts with MLH1. MLH3 is more similar to mismatch repair proteins from yeast, plants, worms and bacteria than to any known mammalian protein, suggesting that its conserved sequence may confer unique functions in mice and humans. Cells in culture stably expressing a dominant-negative MLH3 protein exhibit microsatellite instability. Mlh3 is highly expressed in gastrointestinal epithelium and physically maps to the mouse complex trait locus colon cancer susceptibility I (Ccs1). Although we were unable to identify a mutation in the protein-coding region of Mlh3 in the susceptible mouse strain, colon tumours from congenic Ccs1 mice exhibit microsatellite instability. Functional redundancy among Mlh3, Pms1 and Pms2 may explain why neither Pms1 nor Pms2 mutant mice develop colon cancer, and why PMS1 and PMS2 mutations are only rarely found in HNPCC families.  相似文献   
978.
Crosses between the two North American rodent species Peromyscus polionotus (PO) and Peromyscus maniculatus (BW) yield parent-of-origin effects on both embryonic and placental growth. The two species are approximately the same size, but a female BW crossed with a male PO produces offspring that are smaller than either parent. In the reciprocal cross, the offspring are oversized and typically die before birth. Rare survivors are exclusively female, consistent with Haldane's rule, which states that in instances of hybrid sterility or inviability, the heterogametic sex tends to be more severely affected. To understand these sex- and parent-of-origin-specific patterns of overgrowth, we analysed reciprocal backcrosses. Our studies reveal that hybrid inviability is partially due to a maternally expressed X-linked PO locus and an imprinted paternally expressed autosomal BW locus. In addition, the hybrids display skewing of X-chromosome inactivation in favour of the expression of the BW X chromosome. The most severe overgrowth is accompanied by widespread relaxation of imprinting of mostly paternally expressed genes. Both genetic and epigenetic mechanisms underlie hybrid inviability in Peromyscus and hence have a role in the establishment and maintenance of reproductive isolation barriers in mammals.  相似文献   
979.
The development of non-viral gene-transfer technologies that can support stable chromosomal integration and persistent gene expression in vivo is desirable. Here we describe the successful use of transposon technology for the nonhomologous insertion of foreign genes into the genomes of adult mammals using naked DNA. We show that the Sleeping Beauty transposase can efficiently insert transposon DNA into the mouse genome in approximately 5-6% of transfected mouse liver cells. Chromosomal transposition resulted in long-term expression (>5 months) of human blood coagulation factor IX at levels that were therapeutic in a mouse model of haemophilia B. Our results establish DNA-mediated transposition as a new genetic tool for mammals, and provide new strategies to improve existing non-viral and viral vectors for human gene therapy applications.  相似文献   
980.
Systematic variation in gene expression patterns in human cancer cell lines   总被引:69,自引:0,他引:69  
We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号