首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15788篇
  免费   42篇
  国内免费   48篇
系统科学   80篇
丛书文集   181篇
教育与普及   32篇
理论与方法论   99篇
现状及发展   6574篇
研究方法   815篇
综合类   7788篇
自然研究   309篇
  2013年   122篇
  2012年   291篇
  2011年   585篇
  2010年   125篇
  2008年   343篇
  2007年   318篇
  2006年   341篇
  2005年   356篇
  2004年   333篇
  2003年   300篇
  2002年   277篇
  2001年   472篇
  2000年   449篇
  1999年   319篇
  1992年   269篇
  1991年   205篇
  1990年   229篇
  1989年   227篇
  1988年   226篇
  1987年   222篇
  1986年   209篇
  1985年   300篇
  1984年   237篇
  1983年   161篇
  1982年   173篇
  1981年   165篇
  1980年   188篇
  1979年   437篇
  1978年   325篇
  1977年   314篇
  1976年   305篇
  1975年   330篇
  1974年   393篇
  1973年   369篇
  1972年   385篇
  1971年   446篇
  1970年   559篇
  1969年   471篇
  1968年   488篇
  1967年   441篇
  1966年   392篇
  1965年   301篇
  1964年   93篇
  1959年   171篇
  1958年   299篇
  1957年   200篇
  1956年   185篇
  1955年   150篇
  1954年   189篇
  1948年   144篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Human mitochondrial tRNAs in health and disease   总被引:6,自引:0,他引:6  
The human mitochondrial genome encodes 13 proteins, all subunits of the respiratory chain complexes and thus involved in energy metabolism. These genes are translated by 22 transfer RNAs (tRNAs), also encoded by the mitochondrial genome, which form the minimal set required for reading all codons. Human mitochondrial tRNAs gained interest with the rapid discovery of correlations between point mutations in their genes and various neuromuscular and neurodegenerative disorders. In this review, emerging fundamental knowledge on the structure/function relationships of these particular tRNAs and an overview of the large variety of mechanisms within translation, affected by mutations, are summarized. Also, initial results on wide-ranging molecular consequences of mutations outside the frame of mitochondrial translation are highlighted. While knowledge of mitochondrial tRNAs in both health and disease increases, deciphering the intricate network of events leading different genotypes to the variety of phenotypes requires further investigation using adapted model systems.Received 3 December 2002; received after revision 14 January 2003; accepted 27 January 2003  相似文献   
992.
The pattern of blood flow in the developing heart has long been proposed to play a significant role in cardiac morphogenesis. In response to flow-induced forces, cultured cardiac endothelial cells rearrange their cytoskeletal structure and change their gene expression profiles. To link such in vitro data to the intact heart, we performed quantitative in vivo analyses of intracardiac flow forces in zebrafish embryos. Using in vivo imaging, here we show the presence of high-shear, vortical flow at two key stages in the developing heart, and predict flow-induced forces much greater than might have been expected for micro-scale structures at low Reynolds numbers. To test the relevance of these shear forces in vivo, flow was occluded at either the cardiac inflow or outflow tracts, resulting in hearts with an abnormal third chamber, diminished looping and impaired valve formation. The similarity of these defects to those observed in some congenital heart diseases argues for the importance of intracardiac haemodynamics as a key epigenetic factor in embryonic cardiogenesis.  相似文献   
993.
994.
995.
The effect of high-density lipoprotein (HDL) in protecting against atherosclerosis is usually attributed to its role in 'reverse cholesterol transport'. In this process, HDL particles mediate the efflux and the transport of cholesterol from peripheral cells to the liver for further metabolism and bile excretion. Thus, cell-surface receptors for HDL on hepatocytes are chief partners in the regulation of cholesterol homeostasis. A high-affinity HDL receptor for apolipoprotein A-I (apoA-I) was previously identified on the surface of hepatocytes. Here we show that this receptor is identical to the beta-chain of ATP synthase, a principal protein complex of the mitochondrial inner membrane. Different experimental approaches confirm this ectopic localization of components of the ATP synthase complex and the presence of ATP hydrolase activity at the hepatocyte cell surface. Receptor stimulation by apoA-I triggers the endocytosis of holo-HDL particles (protein plus lipid) by a mechanism that depends strictly on the generation of ADP. We confirm this effect on endocytosis in perfused rat liver ex vivo by using a specific inhibitor of ATP synthase. Thus, membrane-bound ATP synthase has a previously unsuspected role in modulating the concentrations of extracellular ADP and is regulated by a principal plasma apolipoprotein.  相似文献   
996.
The atmosphere of Jupiter's satellite Io is extremely tenuous, time variable and spatially heterogeneous. Only a few molecules--SO2, SO and S2--have previously been identified as constituents of this atmosphere, and possible sources include frost sublimation, surface sputtering and active volcanism. Io has been known for almost 30 years to be surrounded by a cloud of Na, which requires an as yet unidentified atmospheric source of sodium. Sodium chloride has been recently proposed as an important atmospheric constituent, based on the detection of chlorine in Io's plasma torus and models of Io's volcanic gases. Here we report the detection of NaCl in Io's atmosphere; it constitutes only approximately 0.3% when averaged over the entire disk, but is probably restricted to smaller regions than SO2 because of its rapid photolysis and surface condensation. Although the inferred abundance of NaCl in volcanic gases is lower than predicted, those volcanic emissions provide an important source of Na and Cl in Io's neutral clouds and plasma torus.  相似文献   
997.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.  相似文献   
998.
Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in PKD. Here, we show that polycystin-1 (PC1) and polycystin-2 (PC2), proteins respectively encoded by Pkd1 and Pkd2, mouse orthologs of genes mutated in human autosomal dominant PKD, co-distribute in the primary cilia of kidney epithelium. Cells isolated from transgenic mice that lack functional PC1 formed cilia but did not increase Ca(2+) influx in response to physiological fluid flow. Blocking antibodies directed against PC2 similarly abolished the flow response in wild-type cells as did inhibitors of the ryanodine receptor, whereas inhibitors of G-proteins, phospholipase C and InsP(3) receptors had no effect. These data suggest that PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway. Loss or dysfunction of PC1 or PC2 may therefore lead to PKD owing to the inability of cells to sense mechanical cues that normally regulate tissue morphogenesis.  相似文献   
999.
Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development.  相似文献   
1000.
Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in fibrillin-1 (encoded by FBN1 in humans and Fbn1 in mice), a matrix component of extracellular microfibrils. A distinct subgroup of individuals with Marfan syndrome have distal airspace enlargement, historically described as emphysema, which frequently results in spontaneous lung rupture (pneumothorax; refs. 1-3). To investigate the pathogenesis of genetically imposed emphysema, we analyzed the lung phenotype of mice deficient in fibrillin-1, an accepted model of Marfan syndrome. Lung abnormalities are evident in the immediate postnatal period and manifest as a developmental impairment of distal alveolar septation. Aged mice deficient in fibrillin-1 develop destructive emphysema consistent with the view that early developmental perturbations can predispose to late-onset, seemingly acquired phenotypes. We show that mice deficient in fibrillin-1 have marked dysregulation of transforming growth factor-beta (TGF-beta) activation and signaling, resulting in apoptosis in the developing lung. Perinatal antagonism of TGF-beta attenuates apoptosis and rescues alveolar septation in vivo. These data indicate that matrix sequestration of cytokines is crucial to their regulated activation and signaling and that perturbation of this function can contribute to the pathogenesis of disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号