首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2757篇
  免费   10篇
  国内免费   33篇
系统科学   58篇
丛书文集   14篇
教育与普及   4篇
理论与方法论   59篇
现状及发展   1151篇
研究方法   283篇
综合类   1182篇
自然研究   49篇
  2019年   15篇
  2018年   27篇
  2017年   28篇
  2016年   26篇
  2015年   18篇
  2014年   27篇
  2013年   49篇
  2012年   108篇
  2011年   152篇
  2010年   45篇
  2009年   17篇
  2008年   75篇
  2007年   97篇
  2006年   110篇
  2005年   95篇
  2004年   77篇
  2003年   114篇
  2002年   159篇
  2001年   175篇
  2000年   130篇
  1999年   89篇
  1997年   14篇
  1992年   48篇
  1991年   17篇
  1990年   26篇
  1989年   21篇
  1988年   28篇
  1987年   34篇
  1986年   32篇
  1985年   44篇
  1984年   29篇
  1983年   22篇
  1982年   18篇
  1981年   21篇
  1980年   33篇
  1979年   53篇
  1978年   46篇
  1977年   41篇
  1976年   38篇
  1975年   43篇
  1974年   36篇
  1973年   40篇
  1972年   56篇
  1971年   57篇
  1970年   45篇
  1969年   40篇
  1968年   33篇
  1967年   39篇
  1966年   38篇
  1965年   23篇
排序方式: 共有2800条查询结果,搜索用时 15 毫秒
221.
DNA mismatch repair ensures genomic integrity on DNA replication. Recognition of a DNA mismatch by a dimeric MutS protein initiates a cascade of reactions and results in repair of the newly synthesized strand; however, details of the molecular mechanism remain controversial. Here we present the crystal structure at 2.2 A of MutS from Escherichia coli bound to a G x T mismatch. The two MutS monomers have different conformations and form a heterodimer at the structural level. Only one monomer recognizes the mismatch specifically and has ADP bound. Mismatch recognition occurs by extensive minor groove interactions causing unusual base pairing and kinking of the DNA. Nonspecific major groove DNA-binding domains from both monomers embrace the DNA in a clamp-like structure. The interleaved nucleotide-binding sites are located far from the DNA. Mutations in human MutS alpha (MSH2/MSH6) that lead to hereditary predisposition for cancer, such as hereditary non-polyposis colorectal cancer, can be mapped to this crystal structure.  相似文献   
222.
223.
Up to 10 per cent of the ocean floor consists of plateaux--regions of unusually thick oceanic crust thought to be formed by the heads of mantle plumes. Given the ubiquitous presence of recycled oceanic crust in the mantle source of hotspot basalts, it follows that plateau material should also be an important mantle constituent. Here we show that the geochemistry of the Pleistocene basalts from Logudoro, Sardinia, is compatible with the remelting of ancient ocean plateau material that has been recycled into the mantle. The Sr, Nd and Hf isotope compositions of these basalts do not show the signature of pelagic sediments. The basalts' low CaO/Al2O3 and Ce/Pb ratios, their unradiogenic 206Pb and 208Pb, and their Sr, Ba, Eu and Pb excesses indicate that their mantle source contains ancient gabbros formed initially by plagioclase accumulation, typical of plateau material. Also, the high Th/U ratios of the mantle source resemble those of plume magmas. Geochemically, the Logudoro basalts resemble those from Pitcairn Island, which contain the controversial EM-1 component that has been interpreted as arising from a mantle source sprinkled with remains of pelagic sediments. We argue, instead, that the EM-1 source from these two localities is essentially free of sedimentary material, the geochemical characteristics of these lavas being better explained by the presence of recycled oceanic plateaux. The storage of plume heads in the deep mantle through time offers a convenient explanation for the persistence of chemical and mineralogical layering in the mantle.  相似文献   
224.
Neuronal loss and neuritic/cytoskeletal lesions (synaptic disconnection and proliferation of dystrophic neurites) represent major dementia-associated abnormalities in Alzheimer’s disease (AD). This study examined the role of oxidative stress as a factor contributing to both the cell death and neuritic degeneration cascades in AD. Primary neuron cultures were treated with H2O2 (9–90 μM) or desferrioxamine (2–25 μM) for 24 h and then analyzed for viability, mitochondrial mass, mitochondrial function, and pro-apoptosis and sprouting gene expression. H2O2 treatment causes free-radical injury and desferrioxamine causes hypoxia-type injury without free radical generation. The H2O2-treated cells exhibited sustained viability but neurite retraction, impaired mitochondrial function, increased levels of the pro-apoptosis gene product CD95/Fas, reduced expression of N2J1-immunoreactive neuronal thread protein and synaptophysin, and reduced distribution of mitochondria in neuritic processes. Desferrioxamine treatment resulted in dose-dependent neuronal loss associated with impaired mitochondrial function, proliferation of neurites, and reduced expression of GAP-43, which has a role in path-finding during neurite outgrowth. The results suggest that oxidative stress can cause neurodegeneration associated with enhanced susceptibility to apoptosis due to activation of pro-apoptosis genes, neurite retraction (synaptic disconnection), and impaired transport of mitochondria to cell processes where they are likely required for synaptic function. In contrast, hypoxia-type injury causes neuronal loss with proliferation of neurites (sprouting), impaired mitochondrial function, and reduced expression of molecules required to form and maintain synaptic connections. Since similar abnormalities occur in AD, both oxidative stress and hypoxic injury can contribute to AD neurodegeneration. Received 24 May 2000; received after revision 7 July 2000; accepted 27 July 2000  相似文献   
225.
van den Akker F  Zhang X  Miyagi M  Huo X  Misono KS  Yee VC 《Nature》2000,406(6791):101-104
The atrial natriuretic peptide (ANP) hormone is secreted by the heart in response to an increase in blood pressure. ANP exhibits several potent anti-hypertensive actions in the kidney, adrenal gland and vascular system. These actions are induced by hormone binding extracellularly to the ANP receptor, thereby activating its intracellular guanylyl cyclase domain for the production of cyclic GMP. Here we present the crystal structure of the glycosylated dimerized hormone-binding domain of the ANP receptor at 2.0-A resolution. The monomer comprises two interconnected subdomains, each encompassing a central beta-sheet flanked by alpha-helices, and exhibits the type I periplasmic binding protein fold. Dimerization is mediated by the juxtaposition of four parallel helices, arranged two by two, which brings the two protruding carboxy termini into close relative proximity. From affinity labelling and mutagenesis studies, the ANP-binding site maps to the side of the dimer crevice and extends to near the dimer interface. A conserved chloride-binding site is located in the membrane distal domain, and we found that hormone binding is chloride dependent. These studies suggest mechanisms for hormone activation and the allostery of the ANP receptor.  相似文献   
226.
227.
228.
Albrecht M  Lutz M  Spek AL  van Koten G 《Nature》2000,406(6799):970-974
Considerable effort is being devoted to the fabrication of nanoscale devices. Molecular machines, motors and switches have been made, generally operating in solution, but for most device applications (such as electronics and opto-electronics), a maximal degree of order and regularity is required. Crystalline materials would be excellent systems for these purposes, as crystals comprise a vast number of self-assembled molecules, with a perfectly ordered three-dimensional structure. In non-porous crystals, however, the molecules are densely packed and any change in them (due, for example, to a reaction) is likely to destroy the crystal and its properties. Here we report the controlled and fully reversible crystalline-state reaction of gaseous SO2 with non-porous crystalline materials consisting of organoplatinum molecules. This process, including repetitive expansion-reduction sequences (on gas uptake and release) of the crystal lattice, modifies the structures of these molecules without affecting their crystallinity. The process is based on the incorporation of SO2 into the colourless crystals and its subsequent liberation from the orange adducts by reversible bond formation and cleavage. We therefore expect that these crystalline materials will find applications for gas storage devices and as opto-electronic switches.  相似文献   
229.
Colloidal suspensions that form periodic self-assembling structures on sub-micrometre scales are of potential technological interest; for example, three-dimensional arrangements of spheres in colloidal crystals might serve as photonic materials, intended to manipulate light. Colloidal particles with non-spherical shapes (such as rods and plates) are of particular interest because of their ability to form liquid crystals. Nematic liquid crystals possess orientational order; smectic and columnar liquid crystals additionally exhibit positional order (in one or two dimensions respectively). However, such positional ordering may be inhibited in polydisperse colloidal suspensions. Here we describe a suspension of plate-like colloids that shows isotropic, nematic and columnar phases on increasing the particle concentration. We find that the columnar two-dimensional crystal persists for a polydispersity of up to 25%, with a cross-over to smectic-like ordering at very high particle concentrations. Our results imply that liquid crystalline order in synthetic mesoscopic materials may be easier to achieve than previously thought.  相似文献   
230.
Probing the structure of material layers just a few nanometres thick requires analytical techniques with high depth sensitivity. X-ray photoelectron spectroscopy (XPS) provides one such method, but obtaining vertically resolved structural information from the raw data is not straightforward. There are several XPS depth-profiling methods, including ion etching, angle-resolved XPS (ref. 2) and Tougaard's approach, but all suffer various limitations. Here we report a simple, non-destructive XPS depth-profiling method that yields accurate depth information with nanometre resolution. We demonstrate the technique using self-assembled multilayers on gold surfaces; the former contain 'marker' monolayers that have been inserted at predetermined depths. A controllable potential gradient is established vertically through the sample by charging the surface of the dielectric overlayer with an electron flood gun. The local potential is probed by measuring XPS line shifts, which correlate directly with the vertical position of atoms. We term the method 'controlled surface charging' and expect it to be generally applicable to a large variety of mesoscopic heterostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号