首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   6篇
  国内免费   18篇
系统科学   21篇
丛书文集   12篇
教育与普及   50篇
理论与方法论   1篇
现状及发展   198篇
研究方法   65篇
综合类   464篇
自然研究   1篇
  2021年   3篇
  2018年   4篇
  2017年   4篇
  2015年   8篇
  2014年   6篇
  2013年   6篇
  2012年   18篇
  2011年   28篇
  2010年   22篇
  2009年   58篇
  2008年   36篇
  2007年   35篇
  2006年   31篇
  2005年   30篇
  2004年   88篇
  2003年   31篇
  2002年   18篇
  2001年   79篇
  2000年   67篇
  1999年   55篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   24篇
  1991年   15篇
  1990年   8篇
  1989年   12篇
  1988年   9篇
  1987年   6篇
  1986年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   6篇
  1977年   5篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1972年   3篇
  1971年   6篇
  1970年   8篇
  1969年   8篇
  1968年   4篇
  1967年   4篇
  1966年   2篇
  1958年   2篇
  1956年   2篇
排序方式: 共有812条查询结果,搜索用时 93 毫秒
401.
Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.  相似文献   
402.
403.
The highly reduced genome of an enslaved algal nucleus   总被引:34,自引:0,他引:34  
Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.  相似文献   
404.
Marsupials, placentals and their close therian relatives possess complex (tribosphenic) molars that are capable of versatile occlusal functions. This functional complex is widely thought to be a key to the early diversification and evolutionary success of extant therians and their close relatives (tribosphenidans). Long thought to have arisen on northern continents, tribosphenic mammals have recently been reported from southern landmasses. The great age and advanced morphology of these new mammals has led to the alternative suggestion of a Gondwanan origin for the group. Implicit in both biogeographic hypotheses is the assumption that tribosphenic molars evolved only once in mammalian evolutionary history. Phylogenetic and morphometric analyses including these newly discovered taxa suggest a different interpretation: that mammals with tribosphenic molars are not monophyletic. Tribosphenic molars evolved independently in two ancient (holotherian) mammalian groups with different geographic distributions during the Jurassic/Early Cretaceous: an australosphenidan clade endemic to Gondwanan landmasses, survived by extant monotremes; and a boreosphenidan clade of Laurasian continents, including extant marsupials, placentals and their relatives.  相似文献   
405.
Schwartz JC  Zhang X  Fedorov AA  Nathenson SG  Almo SC 《Nature》2001,410(6828):604-608
Regulation of T-cell activity is dependent on antigen-independent co-stimulatory signals provided by the disulphide-linked homodimeric T-cell surface receptors, CD28 and CTLA-4 (ref. 1). Engagement of CD28 with B7-1 and B7-2 ligands on antigen-presenting cells (APCs) provides a stimulatory signal for T-cell activation, whereas subsequent engagement of CTLA-4 with these same ligands results in attenuation of the response. Given their central function in immune modulation, CTLA-4- and CD28-associated signalling pathways are primary therapeutic targets for preventing autoimmune disease, graft versus host disease, graft rejection and promoting tumour immunity. However, little is known about the cell-surface organization of these receptor/ligand complexes and the structural basis for signal transduction. Here we report the 3.2-A resolution structure of the complex between the disulphide-linked homodimer of human CTLA-4 and the receptor-binding domain of human B7-2. The unusual dimerization properties of both CTLA-4 and B7-2 place their respective ligand-binding sites distal to the dimer interface in each molecule and promote the formation of an alternating arrangement of bivalent CTLA-4 and B7-2 dimers that extends throughout the crystal. Direct observation of this CTLA-4/B7-2 network provides a model for the periodic organization of these molecules within the immunological synapse and suggests a distinct mechanism for signalling by dimeric cell-surface receptors.  相似文献   
406.
Diffusion of point defects in two-dimensional colloidal crystals   总被引:1,自引:0,他引:1  
Pertsinidis A  Ling XS 《Nature》2001,413(6852):147-150
Uniform colloidal microspheres dispersed in a solvent will, under appropriate conditions, self-assemble into ordered crystalline structures. Using these colloidal crystals as a model system, a great variety of problems of interest to materials science, physical chemistry, and condensed-matter physics have been investigated during the past two decades. Recently, it has been demonstrated that point defects can be created in two-dimensional colloidal crystals by manipulating individual particles with optical tweezers. Direct imaging of these defects verified that their stable configurations have lower symmetry than the underlying triangular lattice, as predicted by numerical simulations for a number of two-dimensional systems. It was also observed that point defects can dissociate into pairs of well-separated dislocations, a topological excitation especially important in two dimensions. Here we use a similar experimental system to study the dynamics of mono- and di-vacancies in two-dimensional colloidal crystals. We see evidence that the excitation of point defects into dislocation pairs enhances the diffusion of di-vacancies. Moreover, the hopping of the defects does not follow a pure random walk, but exhibits surprising memory effects. We expect the results presented in this work to be relevant for explaining the dynamics of other two-dimensional systems.  相似文献   
407.
408.
We have placed 7,600 cytogenetically defined landmarks on the draft sequence of the human genome to help with the characterization of genes altered by gross chromosomal aberrations that cause human disease. The landmarks are large-insert clones mapped to chromosome bands by fluorescence in situ hybridization. Each clone contains a sequence tag that is positioned on the genomic sequence. This genome-wide set of sequence-anchored clones allows structural and functional analyses of the genome. This resource represents the first comprehensive integration of cytogenetic, radiation hybrid, linkage and sequence maps of the human genome; provides an independent validation of the sequence map and framework for contig order and orientation; surveys the genome for large-scale duplications, which are likely to require special attention during sequence assembly; and allows a stringent assessment of sequence differences between the dark and light bands of chromosomes. It also provides insight into large-scale chromatin structure and the evolution of chromosomes and gene families and will accelerate our understanding of the molecular bases of human disease and cancer.  相似文献   
409.
Lifshitz Y  Duan XF  Shang NG  Li Q  Wan L  Bello I  Lee ST 《Nature》2001,412(6845):404
Carbon is unique in the variety of configurations it can adopt with itself and other elements. Here we show how ion beams can be used to nanostructure various diamond polytypes, epitaxially aligning them to a silicon substrate. The ready controllability of ion beams, which are already used to manufacture submicrometre-scale devices, means that our findings should enable new carbon and non-carbon materials to be nanostructured for a host of applications.  相似文献   
410.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号