首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   2篇
  国内免费   6篇
系统科学   9篇
教育与普及   2篇
理论与方法论   20篇
现状及发展   74篇
研究方法   107篇
综合类   388篇
自然研究   87篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   45篇
  2011年   148篇
  2010年   28篇
  2009年   4篇
  2008年   51篇
  2007年   49篇
  2006年   47篇
  2005年   57篇
  2004年   61篇
  2003年   53篇
  2002年   48篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1988年   3篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1972年   1篇
  1968年   1篇
排序方式: 共有687条查询结果,搜索用时 15 毫秒
651.
Osborne LC  Lisberger SG  Bialek W 《Nature》2005,437(7057):412-416
Suppose that the variability in our movements is caused not by noise in the motor system itself, nor by fluctuations in our intentions or plans, but rather by errors in our sensory estimates of the external parameters that define the appropriate action. For tasks in which precision is at a premium, performance would be optimal if no noise were added in movement planning and execution: motor output would be as accurate as possible given the quality of sensory inputs. Here we use visually guided smooth-pursuit eye movements in primates as a testing ground for this notion of optimality. In response to repeated presentations of identical target motions, nearly 92% of the variance in eye trajectory can be accounted for as a consequence of errors in sensory estimates of the speed, direction and timing of target motion, plus a small background noise that is observed both during eye movements and during fixations. The magnitudes of the inferred sensory errors agree with the observed thresholds for sensory discrimination by perceptual systems, suggesting that the very different neural processes of perception and action are limited by the same sources of noise.  相似文献   
652.
Wei W  Ayad NG  Wan Y  Zhang GJ  Kirschner MW  Kaelin WG 《Nature》2004,428(6979):194-198
Cell-cycle transitions are driven by waves of ubiquitin-dependent degradation of key cell-cycle regulators. SCF (Skp1/Cullin/F-box protein) complexes and anaphase-promoting complexes (APC) represent two major classes of ubiquitin ligases whose activities are thought to regulate primarily the G1/S and metaphase/anaphase cell-cycle transitions, respectively. The major target of the Skp1/Cul1/Skp2 (SCF(SKP2)) complex is thought to be the Cdk inhibitor p27 during S phase, whereas the principal targets for the APC are thought to be involved in chromatid separation (securin) and exit from mitosis (cyclin B). Although the role of the APC in mitosis is relatively clear, there is mounting evidence that APCs containing Cdh1 (APC(CDH1)) also have a function in the G1 phase of the cell cycle. Here, we show that the F-box protein Skp2 is polyubiquitinated, and hence earmarked for destruction, by APC(CDH1). As a result, accumulation of SCF(SKP2) requires prior inactivation of APC(CDH1). These findings provide an insight into the orchestration of SCF and APC activities during cell-cycle progression, and into the involvement of the APC in G1.  相似文献   
653.
654.
655.
656.
X-ray structure of a protein-conducting channel   总被引:1,自引:0,他引:1  
A conserved heterotrimeric membrane protein complex, the Sec61 or SecY complex, forms a protein-conducting channel, allowing polypeptides to be transferred across or integrated into membranes. We report the crystal structure of the complex from Methanococcus jannaschii at a resolution of 3.2 A. The structure suggests that one copy of the heterotrimer serves as a functional translocation channel. The alpha-subunit has two linked halves, transmembrane segments 1-5 and 6-10, clamped together by the gamma-subunit. A cytoplasmic funnel leading into the channel is plugged by a short helix. Plug displacement can open the channel into an 'hourglass' with a ring of hydrophobic residues at its constriction. This ring may form a seal around the translocating polypeptide, hindering the permeation of other molecules. The structure also suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation.  相似文献   
657.
Weber KL  Sokac AM  Berg JS  Cheney RE  Bement WM 《Nature》2004,431(7006):325-329
Proper spindle positioning and orientation are essential for asymmetric cell division and require microtubule-actin filament (F-actin) interactions in many systems. Such interactions are particularly important in meiosis, where they mediate nuclear anchoring, as well as meiotic spindle assembly and rotation, two processes required for asymmetric cell division. Myosin-10 proteins are phosphoinositide-binding, actin-based motors that contain carboxy-terminal MyTH4 and FERM domains of unknown function. Here we show that Xenopus laevis myosin-10 (Myo10) associates with microtubules in vitro and in vivo, and is concentrated at the point where the meiotic spindle contacts the F-actin-rich cortex. Microtubule association is mediated by the MyTH4-FERM domains, which bind directly to purified microtubules. Disruption of Myo10 function disrupts nuclear anchoring, spindle assembly and spindle-F-actin association. Thus, this myosin has a novel and critically important role during meiosis in integrating the F-actin and microtubule cytoskeletons.  相似文献   
658.
Jeffery WR  Strickler AG  Yamamoto Y 《Nature》2004,431(7009):696-699
The neural crest, a source of many different cell types in vertebrate embryos, has not been identified in other chordates. Current opinion therefore holds that neural crest cells were a vertebrate innovation. Here we describe a migratory cell population resembling neural crest cells in the ascidian urochordate Ecteinascidia turbinata. Labelling of embryos and larvae with the vital lipophilic dye DiI enabled us to detect cells that emerge from the neural tube, migrate into the body wall and siphon primordia, and subsequently differentiate as pigment cells. These cells express HNK-1 antigen and Zic gene markers of vertebrate neural crest cells. The results suggest that migratory cells with some of the features of neural crest cells are present in the urochordates. Thus, we propose a hypothesis for neural crest evolution beginning with the release of migratory cells from the CNS to produce body pigmentation in the common ancestor of the urochordates and vertebrates. These cells may have gained additional functions or were joined by other cell types to generate the variety of derivatives typical of the vertebrate neural crest.  相似文献   
659.
660.
A recent and prevalent mutation in the chemokine receptor CCR5 in humans of northern European ancestry has been proposed to provide protection against bubonic plague. Here we infect both normal and CCR5-deficient mice with the bacterium Yersinia pestis, the cause of the plague epidemics that wiped out one-third of Europeans in the Middle Ages, and find no difference in either bacterial growth or survival time between the two groups. Unless the pathogenesis of Yersinia infection differs markedly between mice and humans, our results indicate that CCR5 deficiency in people is unlikely to protect against plague.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号