首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26856篇
  免费   80篇
  国内免费   112篇
系统科学   138篇
丛书文集   140篇
教育与普及   74篇
理论与方法论   113篇
现状及发展   11197篇
研究方法   1169篇
综合类   13763篇
自然研究   454篇
  2013年   204篇
  2012年   398篇
  2011年   854篇
  2010年   171篇
  2008年   476篇
  2007年   542篇
  2006年   539篇
  2005年   556篇
  2004年   561篇
  2003年   521篇
  2002年   482篇
  2001年   869篇
  2000年   865篇
  1999年   538篇
  1994年   354篇
  1992年   529篇
  1991年   393篇
  1990年   461篇
  1989年   422篇
  1988年   392篇
  1987年   457篇
  1986年   444篇
  1985年   583篇
  1984年   427篇
  1983年   372篇
  1982年   333篇
  1981年   319篇
  1980年   337篇
  1979年   863篇
  1978年   645篇
  1977年   595篇
  1976年   538篇
  1975年   560篇
  1974年   695篇
  1973年   622篇
  1972年   566篇
  1971年   709篇
  1970年   981篇
  1969年   717篇
  1968年   720篇
  1967年   690篇
  1966年   698篇
  1965年   488篇
  1959年   245篇
  1958年   433篇
  1957年   259篇
  1956年   264篇
  1955年   231篇
  1954年   214篇
  1948年   241篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
981.
Altered growth and function of synoviocytes, the intimal cells which line joint cavities and tendon sheaths, occur in a number of skeletal diseases. Hyperplasia of synoviocytes is found in both rheumatoid arthritis and osteoarthritis, despite differences in the underlying aetiologies of the two disorders. We have studied the autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP; MIM 208250) to identify biological pathways that lead to synoviocyte hyperplasia, the principal pathological feature of this syndrome. Using a positional-candidate approach, we identified mutations in a gene (CACP) encoding a secreted proteoglycan as the cause of CACP. The CACP protein, which has previously been identified as both 'megakaryocyte stimulating factor precursor' and 'superficial zone protein', contains domains that have homology to somatomedin B, heparin-binding proteins, mucins and haemopexins. In addition to expression in joint synovium and cartilage, CACP is expressed in non-skeletal tissues including liver and pericardium. The similarity of CACP sequence to that of other protein families and the expression of CACP in non-skeletal tissues suggest it may have diverse biological activities.  相似文献   
982.
Multiple sclerosis (MS) is a complex chronic neurologic disease with a suspected autoimmune pathogenesis. Although there is evidence that the development of MS is determined by both environmental influences and genes, these factors are largely undefined, except for major histocompatibility (MHC) genes. Linkage analyses and association studies have shown that susceptibility to MS is associated with genes in the human histocompatibility leukocyte antigens (HLA) class II region, but the contribution of these genes to MS disease development less compared with their contribution to disorders such as insulin-dependent diabetes mellitus. Due to the strong linkage disequilibrium in the MHC class II region, it has not been possible to determine which gene(s) is responsible for the genetic predisposition. In transgenic mice, we have expressed three human components involved in T-cell recognition of an MS-relevant autoantigen presented by the HLA-DR2 molecule: DRA*0101/DRB1*1501 (HLA-DR2), an MHC class II candidate MS susceptibility genes found in individuals of European descent; a T-cell receptor (TCR) from an MS-patient-derived T-cell clone specific for the HLA-DR2 bound immunodominant myelin basic protein (MBP) 4102 peptide; and the human CD4 coreceptor. The amino acid sequence of the MBP 84-102 peptide is the same in both human and mouse MBP. Following administration of the MBP peptide, together with adjuvant and pertussis toxin, transgenic mice developed focal CNS inflammation and demyelination that led to clinical manifestations and disease courses resembling those seen in MS. Spontaneous disease was observed in 4% of mice. When DR2 and TCR double-transgenic mice were backcrossed twice to Rag2 (for recombination-activating gene 2)-deficient mice, the incidence of spontaneous disease increased, demonstrating that T cells specific for the HLA-DR2 bound MBP peptide are sufficient and necessary for development of disease. Our study provides evidence that HLA-DR2 can mediate both induced and spontaneous disease resembling MS by presenting an MBP self-peptide to T cells.  相似文献   
983.
Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Among the four loci causing AD-HSP identified so far, the SPG4 locus at chromosome 2p2-1p22 has been shown to account for 40-50% of all AD-HSP families. Using a positional cloning strategy based on obtaining sequence of the entire SPG4 interval, we identified a candidate gene encoding a new member of the AAA protein family, which we named spastin. Sequence analysis of this gene in seven SPG4-linked pedigrees revealed several DNA modifications, including missense, nonsense and splice-site mutations. Both SPG4 and its mouse orthologue were shown to be expressed early and ubiquitously in fetal and adult tissues. The sequence homologies and putative subcellular localization of spastin suggest that this ATPase is involved in the assembly or function of nuclear protein complexes.  相似文献   
984.
985.
986.
Sigal LJ  Crotty S  Andino R  Rock KL 《Nature》1999,398(6722):77-80
Cytotoxic T lymphocytes (CTLs) are thought to detect viral infections by monitoring the surface of all cells for the presence of viral peptides bound to major histocompatibility complex (MHC) class I molecules. In most cells, peptides presented by MHC class I molecules are derived exclusively from proteins synthesized by the antigen-bearing cells. Macrophages and dendritic cells also have an alternative MHC class I pathway that can present peptides derived from extracellular antigens; however, the physiological role of this process is unclear. Here we show that virally infected non-haematopoietic cells are unable to stimulate primary CTL-mediated immunity directly. Instead, bone-marrow-derived cells are required as antigen-presenting cells (APCs) to initiate anti-viral CTL responses. In these APCs, the alternative (exogenous) MHC class I pathway is the obligatory mechanism for the initiation of CTL responses to viruses that infect only non-haematopoietic cells.  相似文献   
987.
Leonhard K  Stiegler A  Neupert W  Langer T 《Nature》1999,398(6725):348-351
The AAA domain, a conserved Walker-type ATPase module, is a feature of members of the AAA family of proteins, which are involved in many cellular processes, including vesicular transport, organelle biogenesis, microtubule rearrangement and protein degradation. The function of the AAA domain, however, has not been explained. Membrane-anchored AAA proteases of prokaryotic and eukaryotic cells comprise a subfamily of AAA proteins that have metal-dependent peptidase activity and mediate the degradation of non-assembled membrane proteins. Inactivation of an orthologue of this protease family in humans causes neurodegeneration in hereditary spastic paraplegia. Here we investigate the AAA domain of the yeast protein Yme1, a subunit of the iota-AAA protease located in the inner membrane of mitochondria. We show that Yme1 senses the folding state of solvent-exposed domains and specifically degrades unfolded membrane proteins. Substrate recognition and binding are mediated by the amino-terminal region of the AAA domain. The purified AAA domain of Yme1 binds unfolded polypeptides and suppresses their aggregation. Our results indicate that the AAA domain of Ymel has a chaperone-like activity and suggest that the AAA domains of other AAA proteins may have a similar function.  相似文献   
988.
Molecular basis of triclosan activity   总被引:19,自引:0,他引:19  
  相似文献   
989.
Electrical conduction through DNA molecules   总被引:23,自引:0,他引:23  
Fink HW  Schönenberger C 《Nature》1999,398(6726):407-410
The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号