首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21369篇
  免费   70篇
  国内免费   97篇
系统科学   127篇
丛书文集   49篇
教育与普及   60篇
理论与方法论   103篇
现状及发展   9177篇
研究方法   933篇
综合类   10699篇
自然研究   388篇
  2012年   338篇
  2011年   728篇
  2010年   137篇
  2009年   126篇
  2008年   351篇
  2007年   409篇
  2006年   432篇
  2005年   422篇
  2004年   439篇
  2003年   376篇
  2002年   424篇
  2001年   640篇
  2000年   654篇
  1999年   443篇
  1992年   392篇
  1991年   311篇
  1990年   353篇
  1989年   339篇
  1988年   340篇
  1987年   381篇
  1986年   345篇
  1985年   467篇
  1984年   373篇
  1983年   292篇
  1982年   261篇
  1981年   279篇
  1980年   282篇
  1979年   683篇
  1978年   570篇
  1977年   466篇
  1976年   479篇
  1975年   473篇
  1974年   544篇
  1973年   473篇
  1972年   456篇
  1971年   608篇
  1970年   800篇
  1969年   542篇
  1968年   580篇
  1967年   585篇
  1966年   575篇
  1965年   385篇
  1964年   184篇
  1959年   185篇
  1958年   354篇
  1957年   210篇
  1956年   210篇
  1955年   179篇
  1954年   158篇
  1948年   187篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
291.
Shim JH  Haule K  Kotliar G 《Nature》2007,446(7135):513-516
Although the nuclear properties of the late actinides (plutonium, americium and curium) are fully understood and widely applied to energy generation, their solid-state properties do not fit within standard models and are the subject of active research. Plutonium displays phases with enormous volume differences, and both its Pauli-like magnetic susceptibility and resistivity are an order of magnitude larger than those of simple metals. Curium is also highly resistive, but its susceptibility is Curie-like at high temperatures and orders antiferromagnetically at low temperatures. The anomalous properties of the late actinides stem from the competition between itinerancy and localization of their f-shell electrons, which makes these elements strongly correlated materials. A central problem in this field is to understand the mechanism by which these conflicting tendencies are resolved in such materials. Here we identify the electronic mechanisms responsible for the anomalous behaviour of late actinides, revisiting the concept of valence using a theoretical approach that treats magnetism, Kondo screening, atomic multiplet effects and crystal field splitting on the same footing. We find that the ground state in plutonium is a quantum superposition of two distinct atomic valences, whereas curium settles into a magnetically ordered single valence state at low temperatures. The f(7) configuration of curium is contrasted with the multiple valences of the plutonium ground state, which we characterize by a valence histogram. The balance between the Kondo screening and magnetism is controlled by the competition between spin-orbit coupling, the strength of atomic multiplets and the degree of itinerancy. Our approach highlights the electronic origin of the bonding anomalies in plutonium, and can be applied to predict generalized valences and the presence or absence of magnetism in other compounds starting from first principles.  相似文献   
292.
The superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (T(c)) in conventional BCS superconductors. In underdoped high-T(c) superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above T(c) (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above T(c) is one of the central questions in high-T(c) research. Although some experimental evidence suggests that the two gaps are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap that opens at T(c) and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments.  相似文献   
293.
294.
Mendillo M  Laurent S  Wilson J  Baumgardner J  Konrad J  Karl WC 《Nature》2007,448(7151):330-332
On Jupiter's moon Io, volcanic plumes and evaporating lava flows provide hot gases to form an atmosphere that is subsequently ionized. Some of Io's plasma is captured by the planet's strong magnetic field to form a co-rotating torus at Io's distance; the remaining ions and electrons form Io's ionosphere. The torus and ionosphere are also depleted by three time-variable processes that produce a banana-shaped cloud orbiting with Io, a giant nebula extending out to about 500 Jupiter radii, and a jet close to Io. No spatial constraints exist for the sources of the first two; they have been inferred only from modelling the patterns seen in the trace gas sodium observed far from Io. Here we report observations that reveal a spatially confined stream that ejects sodium only from the wake of the Io-torus interaction, together with a visually distinct, spherically symmetrical outflow region arising from atmospheric sputtering. The spatial extent of the ionospheric wake that feeds the stream is more than twice that observed by the Galileo spacecraft and modelled successfully. This implies considerable variability, and therefore the need for additional modelling of volcanically-driven, episodic states of the great jovian nebula.  相似文献   
295.
Symbolic arithmetic knowledge without instruction   总被引:1,自引:0,他引:1  
Gilmore CK  McCarthy SE  Spelke ES 《Nature》2007,447(7144):589-591
Symbolic arithmetic is fundamental to science, technology and economics, but its acquisition by children typically requires years of effort, instruction and drill. When adults perform mental arithmetic, they activate nonsymbolic, approximate number representations, and their performance suffers if this nonsymbolic system is impaired. Nonsymbolic number representations also allow adults, children, and even infants to add or subtract pairs of dot arrays and to compare the resulting sum or difference to a third array, provided that only approximate accuracy is required. Here we report that young children, who have mastered verbal counting and are on the threshold of arithmetic instruction, can build on their nonsymbolic number system to perform symbolic addition and subtraction. Children across a broad socio-economic spectrum solved symbolic problems involving approximate addition or subtraction of large numbers, both in a laboratory test and in a school setting. Aspects of symbolic arithmetic therefore lie within the reach of children who have learned no algorithms for manipulating numerical symbols. Our findings help to delimit the sources of children's difficulties learning symbolic arithmetic, and they suggest ways to enhance children's engagement with formal mathematics.  相似文献   
296.
297.
Wang H  Ouyang Y  Somers WG  Chia W  Lu B 《Nature》2007,449(7158):96-100
Self-renewal and differentiation are cardinal features of stem cells. Asymmetric cell division provides one fundamental mechanism by which stem cell self-renewal and differentiation are balanced. A failure of this balance could lead to diseases such as cancer. During asymmetric division of stem cells, factors controlling their self-renewal and differentiation are unequally segregated between daughter cells. Numb is one such factor that is segregated to the differentiating daughter cell during the stem-cell-like neuroblast divisions in Drosophila melanogaster, where it inhibits self-renewal. The localization and function of Numb is cell-cycle-dependent. Here we show that Polo (ref. 13), a key cell cycle regulator, the mammalian counterparts of which have been implicated as oncogenes as well as tumour suppressors, acts as a tumour suppressor in the larval brain. Supernumerary neuroblasts are produced at the expense of neurons in polo mutants. Polo directly phosphorylates Partner of Numb (Pon, ref. 16), an adaptor protein for Numb, and this phosphorylation event is important for Pon to localize Numb. In polo mutants, the asymmetric localization of Pon, Numb and atypical protein kinase C are disrupted, whereas other polarity markers are largely unaffected. Overexpression of Numb suppresses neuroblast overproliferation caused by polo mutations, suggesting that Numb has a major role in mediating this effect of Polo. Our results reveal a biochemical link between the cell cycle and the asymmetric protein localization machinery, and indicate that Polo can inhibit progenitor self-renewal by regulating the localization and function of Numb.  相似文献   
298.
299.
Ballester GE  Sing DK  Herbert F 《Nature》2007,445(7127):511-514
About ten per cent of the known extrasolar planets are gas giants that orbit very close to their parent stars. The atmospheres of these 'hot Jupiters' are heated by the immense stellar irradiation. In the case of the planet HD 209458b, this energy deposition results in a hydrodynamic state in the upper atmosphere, allowing for sizeable expansion and escape of neutral hydrogen gas. HD 209458b was the first extrasolar planet discovered that transits in front of its parent star. The size of the planet can be measured using the total optical obscuration of the stellar disk during an observed transit, and the structure and composition of the planetary atmosphere can be studied using additional planetary absorption signatures in the stellar spectrum. Here we report the detection of absorption by hot hydrogen in the atmosphere of HD 209458b. Previously, the lower atmosphere and the full extended upper atmosphere of HD 209458b have been observed, whereas here we probe a layer where the escaping gas forms in the upper atmosphere of HD 209458b.  相似文献   
300.
Pearson DG  Parman SW  Nowell GM 《Nature》2007,449(7159):202-205
Although Earth's continental crust is thought to have been derived from the mantle, the timing and mode of crust formation have proven to be elusive issues. The area of preserved crust diminishes markedly with age, and this can be interpreted as being the result of either the progressive accumulation of new crust or the tectonic recycling of old crust. However, there is a disproportionate amount of crust of certain ages, with the main peaks being 1.2, 1.9, 2.7 and 3.3 billion years old; this has led to a third model in which the crust has grown through time in pulses, although peaks in continental crust ages could also record preferential preservation. The 187Re-187Os decay system is unique in its ability to track melt depletion events within the mantle and could therefore potentially link the crust and mantle differentiation records. Here we employ a laser ablation technique to analyse large numbers of osmium alloy grains to quantify the distribution of depletion ages in the Earth's upper mantle. Statistical analysis of these data, combined with other samples of the upper mantle, show that depletion ages are not evenly distributed but cluster in distinct periods, around 1.2, 1.9 and 2.7 billion years. These mantle depletion events coincide with peaks in the generation of continental crust and so provide evidence of coupled, global and pulsed mantle-crust differentiation, lending strong support to pulsed models of continental growth by means of large-scale mantle melting events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号