首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26081篇
  免费   1600篇
  国内免费   531篇
系统科学   1493篇
丛书文集   273篇
教育与普及   233篇
理论与方法论   375篇
现状及发展   5190篇
研究方法   560篇
综合类   19817篇
自然研究   271篇
  2021年   231篇
  2018年   830篇
  2017年   852篇
  2016年   564篇
  2015年   298篇
  2014年   342篇
  2013年   373篇
  2012年   742篇
  2011年   1759篇
  2010年   1225篇
  2009年   908篇
  2008年   1107篇
  2007年   1459篇
  2006年   621篇
  2005年   749篇
  2004年   684篇
  2003年   593篇
  2002年   546篇
  2001年   606篇
  2000年   637篇
  1999年   711篇
  1998年   487篇
  1997年   532篇
  1996年   485篇
  1995年   375篇
  1994年   371篇
  1993年   306篇
  1992年   488篇
  1991年   385篇
  1990年   393篇
  1989年   365篇
  1988年   320篇
  1987年   304篇
  1986年   232篇
  1985年   260篇
  1979年   331篇
  1978年   257篇
  1977年   241篇
  1976年   224篇
  1975年   238篇
  1974年   306篇
  1973年   278篇
  1972年   236篇
  1971年   337篇
  1970年   474篇
  1969年   327篇
  1968年   313篇
  1967年   320篇
  1966年   349篇
  1965年   223篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.  相似文献   
12.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Neuronal vacuolization and glial activation are pathologic hallmarks in the superoxide dismutase 1 (SOD1) mouse model of ALS. Previously, we found the neuropeptide calcitonin gene-related peptide (CGRP) associated with vacuolization and astrogliosis in the spinal cord of these mice. We now show that CGRP abundance positively correlated with the severity of astrogliosis, but not vacuolization, in several motor and non-motor areas throughout the brain. SOD1 mice harboring a genetic depletion of the βCGRP isoform showed reduced CGRP immunoreactivity associated with vacuolization, while motor functions, body weight, survival, and astrogliosis were not altered. When CGRP signaling was completely disrupted through genetic depletion of the CGRP receptor component, receptor activity-modifying protein 1 (RAMP1), hind limb muscle denervation, and loss of muscle performance were accelerated, while body weight and survival were not affected. Dampened neuroinflammation, i.e., reduced levels of astrogliosis in the brain stem already in the pre-symptomatic disease stage, and reduced microgliosis and lymphocyte infiltrations during the late disease phase were additional neuropathology features in these mice. On the molecular level, mRNA expression levels of brain-derived neurotrophic factor (BDNF) and those of the anti-inflammatory cytokine interleukin 6 (IL-6) were elevated, while those of several pro-inflammatory cytokines found reduced in the brain stem of RAMP1-deficient SOD1 mice at disease end stage. Our results thus identify an important, possibly dual role of CGRP in ALS pathogenesis.  相似文献   
13.
It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte–pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.  相似文献   
14.
TNF-related apoptosis-inducing ligand (TRAIL) is a prominent cytokine capable of inducing apoptosis. It can bind to five different cognate receptors, through which diverse intracellular pathways can be activated. TRAIL’s ability to preferentially kill transformed cells makes it a promising potential weapon for targeted tumor therapy. However, recognition of several resistance mechanisms to TRAIL-induced apoptosis has indicated that a thorough understanding of the details of TRAIL biology is still essential before this weapon can be confidently unleashed. Critical to this aim is revealing the functions and regulation mechanisms of TRAIL’s potent death receptor DR5. Although expression and signaling mechanisms of DR5 have been extensively studied, other aspects, such as its subcellular localization, non-signaling functions, and regulation of its membrane transport, have only recently attracted attention. Here, we discuss different aspects of TRAIL/DR5 biology, with a particular emphasis on the factors that seem to influence the cell surface expression pattern of DR5, along with factors that lead to its nuclear localization. Disturbance of this balance apparently affects the sensitivity of cancer cells to TRAIL-mediated apoptosis, thus constituting an eligible target for potential new therapeutic agents.  相似文献   
15.
Skeletal muscle is a highly oxygen-consuming tissue that ensures body support and movement, as well as nutrient and temperature regulation. DNA damage induced by reactive oxygen species is present in muscles and tends to accumulate with age. Here, we present a summary of data obtained on DNA damage and its implication in muscle homeostasis, myogenic differentiation and neuromuscular disorders. Controlled and transient DNA damage appears to be essential for muscular homeostasis and differentiation while uncontrolled and chronic DNA damage negatively affects muscle health.  相似文献   
16.
Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.  相似文献   
17.
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.  相似文献   
18.
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.  相似文献   
19.
20.
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号