排序方式: 共有56条查询结果,搜索用时 15 毫秒
51.
DT Jones N Jäger M Kool T Zichner B Hutter M Sultan YJ Cho TJ Pugh V Hovestadt AM Stütz T Rausch HJ Warnatz M Ryzhova S Bender D Sturm S Pleier H Cin E Pfaff L Sieber A Wittmann M Remke H Witt S Hutter T Tzaridis J Weischenfeldt B Raeder M Avci V Amstislavskiy M Zapatka UD Weber Q Wang B Lasitschka CC Bartholomae M Schmidt C von Kalle V Ast C Lawerenz J Eils R Kabbe V Benes P van Sluis J Koster R Volckmann D Shih MJ Betts RB Russell S Coco GP Tonini U Schüller V Hans N Graf YJ Kim C Monoranu 《Nature》2012,488(7409):100-105
Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients. 相似文献
52.
Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. 总被引:17,自引:0,他引:17
Horizontal gene transfer (HGT) has long been recognized as a principal force in the evolution of genomes. Genome sequences of Archaea and Bacteria have revealed the existence of genes whose similarity to loci in distantly related organisms is explained most parsimoniously by HGT events. In most multicellular organisms, such genetic fixation can occur only in the germ line. Therefore, it is notable that the publication of the human genome reports 113 incidents of direct HGT between bacteria and vertebrates, without any apparent occurrence in evolutionary intermediates, that is, non-vertebrate eukaryotes. Phylogenetic analysis arguably provides the most objective approach for determining the occurrence and directionality of HGT. Here we report a phylogenetic analysis of 28 proposed HGT genes, whose presence in the human genome had been confirmed by polymerase chain reaction (PCR). The results indicate that most putative HGT genes are present in more anciently derived eukaryotes (many such sequences available in non-vertebrate EST databases) and can be explained in terms of descent through common ancestry. They are, therefore, unlikely to be examples of direct HGT from bacteria to vertebrates. 相似文献
53.
Biskup C Kusch J Schulz E Nache V Schwede F Lehmann F Hagen V Benndorf K 《Nature》2007,446(7134):440-443
Cyclic nucleotide-gated (CNG) ion channels mediate sensory signal transduction in photoreceptors and olfactory cells. Structurally, CNG channels are heterotetramers composed of either two or three homologue subunits. Although it is well established that activation is a cooperative process of these subunits, it remains unknown whether the cooperativity is generated by the ligand binding, the gating, or both, and how the subunits interact. In this study, the action of homotetrameric olfactory-type CNGA2 channels was studied in inside-out membrane patches by simultaneously determining channel activation and ligand binding, using the fluorescent cGMP analogue 8-DY547-cGMP as the ligand. At concentrations of 8-DY547-cGMP < 1 microM, steady-state binding was larger than steady-state activation, whereas at higher concentrations it was smaller, generating a crossover of the steady-state relationships. Global analysis of these relationships together with multiple activation time courses following cGMP jumps showed that four ligands bind to the channels and that there is significant interaction between the binding sites. Among the binding steps, the second is most critical for channel opening: its association constant is three orders of magnitude smaller than the others and it triggers a switch from a mostly closed to a maximally open state. These results contribute to unravelling the role of the subunits in the cooperative mechanism of CNGA2 channel activation and could be of general relevance for the action of other ion channels and receptors. 相似文献
54.
Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean 总被引:1,自引:0,他引:1
Gersonde R Kyte FT Bleil U Diekmann B Flores JA Gohl K Grahl G Hagen R Kuhn G Sierro FJ Volker D Abelmann A Bostwick JA 《Nature》1997,390(6658):357-363
In 1995, an expedition on board the research vessel FS Polarstern explored the impact site of the Eltanin asteroid in the Southern Ocean, the only known asteroid impact into a deep ocean basin. Analyses of the geological record of the impact region place the event in the late Pliocene (approximately 2.15 Myr) and constrain the size of the asteroid to be >1 km. The explosive force inferred for this event places it at the threshold of impacts believed to have global consequences, and its study should therefore provide a baseline for the reconstruction and modelling of similar events, which are common on geological timescales. 相似文献
55.
The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling 总被引:1,自引:0,他引:1
Takashima S Mkrtchyan M Younossi-Hartenstein A Merriam JR Hartenstein V 《Nature》2008,454(7204):651-655
The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system. 相似文献
56.
Faelber K Posor Y Gao S Held M Roske Y Schulze D Haucke V Noé F Daumke O 《Nature》2011,477(7366):556-560
Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function. 相似文献