首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2394篇
  免费   24篇
  国内免费   2篇
系统科学   67篇
理论与方法论   37篇
现状及发展   1510篇
研究方法   118篇
综合类   576篇
自然研究   112篇
  2020年   20篇
  2018年   49篇
  2017年   44篇
  2016年   53篇
  2015年   52篇
  2014年   29篇
  2013年   40篇
  2012年   76篇
  2011年   124篇
  2010年   39篇
  2009年   19篇
  2008年   56篇
  2007年   55篇
  2006年   76篇
  2005年   73篇
  2004年   57篇
  2003年   60篇
  2002年   58篇
  2001年   39篇
  2000年   25篇
  1999年   27篇
  1993年   16篇
  1992年   23篇
  1991年   18篇
  1987年   15篇
  1985年   20篇
  1984年   29篇
  1983年   18篇
  1982年   25篇
  1981年   31篇
  1979年   52篇
  1978年   44篇
  1977年   50篇
  1976年   44篇
  1975年   35篇
  1974年   42篇
  1973年   53篇
  1972年   47篇
  1971年   43篇
  1970年   75篇
  1969年   67篇
  1968年   97篇
  1967年   72篇
  1966年   56篇
  1965年   53篇
  1964年   47篇
  1963年   22篇
  1962年   27篇
  1961年   20篇
  1959年   16篇
排序方式: 共有2420条查询结果,搜索用时 15 毫秒
71.
72.
Leadership, social capital and incentives promote successful fisheries   总被引:4,自引:0,他引:4  
Gutiérrez NL  Hilborn R  Defeo O 《Nature》2011,470(7334):386-389
One billion people depend on seafood as their primary source of protein and 25% of the world's total animal protein comes from fisheries. Yet a third of fish stocks worldwide are overexploited or depleted. Using individual case studies, many have argued that community-based co-management should prevent the tragedy of the commons because cooperative management by fishers, managers and scientists often results in sustainable fisheries. However, general and multidisciplinary evaluations of co-management regimes and the conditions for social, economic and ecological success within such regimes are lacking. Here we examine 130 co-managed fisheries in a wide range of countries with different degrees of development, ecosystems, fishing sectors and type of resources. We identified strong leadership as the most important attribute contributing to success, followed by individual or community quotas, social cohesion and protected areas. Less important conditions included enforcement mechanisms, long-term management policies and life history of the resources. Fisheries were most successful when at least eight co-management attributes were present, showing a strong positive relationship between the number of these attributes and success, owing to redundancy in management regulations. Our results demonstrate the critical importance of prominent community leaders and robust social capital, combined with clear incentives through catch shares and conservation benefits derived from protected areas, for successfully managing aquatic resources and securing the livelihoods of communities depending on them. Our study offers hope that co-management, the only realistic solution for the majority of the world's fisheries, can solve many of the problems facing global fisheries.  相似文献   
73.
74.
75.
Until recently, intricate details of the optical design of non-biomineralized arthropod eyes remained elusive in Cambrian Burgess-Shale-type deposits, despite exceptional preservation of soft-part anatomy in such Konservat-Lagerst?tten. The structure and development of ommatidia in arthropod compound eyes support a single origin some time before the latest common ancestor of crown-group arthropods, but the appearance of compound eyes in the arthropod stem group has been poorly constrained in the absence of adequate fossils. Here we report 2-3-cm paired eyes from the early Cambrian (approximately 515 million years old) Emu Bay Shale of South Australia, assigned to the Cambrian apex predator Anomalocaris. Their preserved visual surfaces are composed of at least 16,000 hexagonally packed ommatidial lenses (in a single eye), rivalling the most acute compound eyes in modern arthropods. The specimens show two distinct taphonomic modes, preserved as iron oxide (after pyrite) and calcium phosphate, demonstrating that disparate styles of early diagenetic mineralization can replicate the same type of extracellular tissue (that is, cuticle) within a single Burgess-Shale-type deposit. These fossils also provide compelling evidence for the arthropod affinities of anomalocaridids, push the origin of compound eyes deeper down the arthropod stem lineage, and indicate that the compound eye evolved before such features as a hardened exoskeleton. The inferred acuity of the anomalocaridid eye is consistent with other evidence that these animals were highly mobile visual predators in the water column. The existence of large, macrophagous nektonic predators possessing sharp vision--such as Anomalocaris--within the early Cambrian ecosystem probably helped to accelerate the escalatory 'arms race' that began over half a billion years ago.  相似文献   
76.
Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.  相似文献   
77.
78.
Spin-orbit (SO) coupling--the interaction between a quantum particle's spin and its momentum--is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom's intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose-Einstein condensate by dressing two atomic spin states with a pair of lasers. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling--equally applicable for bosons and fermions--sets the stage for the realization of topological insulators in fermionic neutral atom systems.  相似文献   
79.
Peça J  Feliciano C  Ting JT  Wang W  Wells MF  Venkatraman TN  Lascola CD  Fu Z  Feng G 《Nature》2011,472(7344):437-442
Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan-McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.  相似文献   
80.
Many successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence indicates that they activate dendritic cells via Toll-like receptors (TLRs). For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates dendritic cells via multiple TLRs to stimulate proinflammatory cytokines. Triggering specific combinations of TLRs in dendritic cells can induce synergistic production of cytokines, which results in enhanced T-cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that program such antibody responses remains a major challenge in vaccinology. Here we demonstrate that immunization of mice with synthetic nanoparticles containing antigens plus ligands that signal through TLR4 and TLR7 induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with nanoparticles containing antigens plus a single TLR ligand. Consistent with this there was enhanced persistence of germinal centres and of plasma-cell responses, which persisted in the lymph nodes for >1.5 years. Surprisingly, there was no enhancement of the early short-lived plasma-cell response relative to that observed with single TLR ligands. Molecular profiling of activated B cells, isolated 7 days after immunization, indicated that there was early programming towards B-cell memory. Antibody responses were dependent on direct triggering of both TLRs on B cells and dendritic cells, as well as on T-cell help. Immunization protected completely against lethal avian and swine influenza virus strains in mice, and induced robust immunity against pandemic H1N1 influenza in rhesus macaques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号