首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5425篇
  免费   620篇
系统科学   1073篇
理论与方法论   275篇
现状及发展   868篇
研究方法   1篇
综合类   3828篇
  2018年   727篇
  2017年   732篇
  2016年   430篇
  2015年   30篇
  2014年   3篇
  2013年   2篇
  2012年   256篇
  2011年   951篇
  2010年   814篇
  2009年   454篇
  2008年   506篇
  2007年   763篇
  2006年   2篇
  2005年   42篇
  2004年   121篇
  2003年   149篇
  2002年   55篇
  2000年   1篇
  1994年   2篇
  1991年   3篇
  1983年   1篇
  1967年   1篇
排序方式: 共有6045条查询结果,搜索用时 31 毫秒
251.
In a recent paper [1] published in Physical Review Letters, scientists at the Institute of Modern Physics, Chinese Academy of Sciences, have reported their first results from the Cooler Storage Ring at the Heavy Ion Research Facility, a newly-constructed major scientific facility in Lanzhou, China. As a part of an international collaboration including colleagues from Europe, USA and Japan, they were able to identify in experiments the very  相似文献   
252.
The PHC criterion and the realignment criterion for pure states in infinite-dimensional bipartite quantum systems are given. Furthermore, several equivalent conditions for pure states to be separable are generalized to infinite-dimensional systems.  相似文献   
253.
Based on the fact that the transfer function vector between a source receiver array and the dominant scatterer of boundary reverberation at a range can be obtained from the corresponding reverberations scattered from this range cell, a reverberation nulling concept using time reversal processing has been proposed. However, current reverberation nulling methods have certain limitations when applied into practice, which would null boundary reverberation and target echo simultaneously. As a solution, a passive reverberation nulling and echo enhancement method at low frequency using waveguide invariance is proposed in this paper. In this method, the reverberation subspace for the target range cell is not obtained directly from the return signals scattered by the target range cell but from the return signals scattered by a range cell located before the target using waveguide invariance, so as to suppress the reverberation embodied in the target echo by passive reverberation nulling. Besides, a range-dependent optimal weighting vector rather than conventional projector matrix is deduced to null the reverberation component meanwhile maximizing the target echo, thereby enhancing the echo-to-reverberation ratio furthest. Numerical simulations in typical range-independent shallow water environment demonstrate the efficacy and the improved performance of the proposed method for echo-to-reverberation enhancement.  相似文献   
254.
Correlations for the ignition delay times of hydrogen/air mixtures were developed using the method of High Dimensional Model Representation (HDMR).The hydrogen/air ignition delay times for initial conditions over a wide range of temperatures from 800 to 1600 K,pressures from 0.1 to 100 atm,and equivalence ratios from 0.2 to 10 were first calculated utilizing the full chemical mechanism.Correlations were then developed based on these ignition delay times.Two forms of correlations were constructed:the first one is an overall general model covering the whole range of the initial conditions;while the second one is a piecewise correlation model valid for initial conditions within different sub-domains.The performance of these correlations was studied through comparison with results from the full chemical mechanism as well as experimental data.It was shown that these correlations work well over the whole range of initial conditions and that the accuracy can be significantly improved by using different piecewise correlations for different sub-domains.Therefore,piecewise correlations can be used as an effective replacement for the full mechanism when the prediction of chemical time scale is needed in certain combustion modeling.  相似文献   
255.
Skin collagen fiber-based radar absorbing materials   总被引:2,自引:0,他引:2  
By using skin collagen fiber (CF) as raw material,Schiff base structure containing CF (Sa-CF) was synthesized through CF-salicylaldehyde reaction.Then a novel radar absorbing material (Fe-Sa-CF) was prepared by chelating reaction between Sa-CF and Fe 3+.The coaxial transmission and reflection method was used to analyze the complex permittivity and complex magnetic permeability of these CF-based materials,and the radar cross section (RCS) method was used to investigate their radar absorbing properties in the frequency range of 1.0-18.0 GHz.Experimental results indicated that the conductivity of CF increased from initial 1.08×10-11 to 2.86×10-6 S/cm after being transferred into Fe-Sa-CF,and its dielectric loss tangent (tanδ) in the frequency range of 1.0-17.0 GHz also increased.These facts suggest that the Fe-Sa-CF is electric-loss type radar absorbing material.In the frequency range of 3.0-18.0 GHz,Sa-CF (1.0 mm in thickness) exhibited somewhat radar absorbing property with maximum radar reflection loss (RL) of-4.73 dB.As for Fe-Sa-CF,the absorbing bandwidth was broadened,and the absorbing intensity significantly increased in the frequency range of 1.0-18.0 GHz where a maximum radar RL of-9.23 dB was observed.In addition,the radar absorbing intensity of Fe-Sa-CF can be further improved by increasing membrane thickness.When the thickness reached to 2.0 mm,the RL values of Fe-Sa-CF were-15.0-18.0 dB in the frequency range of 7.0-18.0 GHz.Consequently,a kind of novel radar absorbing material can be prepared by chemical modification of collagen fiber,which is characterized by thin thickness,low density,broad absorption bandwidth and high absorption intensity.  相似文献   
256.
We present a quantum key distribution protocol based on four-level particle entanglement. Furthermore, a controlled quantum key distribution protocol is proposed using three four-level particles. We show that the two protocols are secure.  相似文献   
257.
To prevent the damage caused by DNA strand breaks, eukaryotic cells have evolved a series of highly conserved DNA repair mechanisms. The ubiquitously expressed acetyltransferase, Tip60, plays a central role in ATM (ataxia-telangiectasia mutated) activation which is involved in DNA repair. Recent work uncovered a new mechanism of ATM activation mediated by Tip60 and demonstrated that histone methylation, specifically, trimethylation of histone H3, is a key factor in the process. Here, we review the current understanding of how Tip60 is activated and how it activates ATM in response to DNA damage.  相似文献   
258.
259.
In this paper, we investigate the growth of meromorphic solutions of higher order linear differential equation f^(k) +Ak-1 (z)e^Pk-1^(z) f^(k-1) +…+A1 (z)e^P1(z) f′ +Ao(z)e^Po(z) f = 0 (k ≤ 2), where Pj(z) (j = 0, 1,..., k - 1) are nonconstant polynomials such that deg Pj = n (j = 0, 1,..., k - 1) and Aj(z)(≠ 0) (j = 0, 1,..., k - 1) are meromorphic functions with order p(Aj) 〈 n (j = 0, 1,..., k - 1).  相似文献   
260.
Plants have an innate immunity system to defend themselves against pathogens. With the primary immune system, plants recognize microbe-associated molecular patterns (MAMPs) of potential pathogens through pattern recognition receptors (PRRs) that mediate a basal defense response. Plant pathogens suppress this basal defense response by means of effectors that enable them to cause disease. With the secondary immune system, plants have gained the ability to recognize effector-induced perturbations of host targets through resistance proteins (RPs) that mediate a strong local defense response that stops pathogen growth. Both primary and secondary immune responses in plants depend on germ line-encoded PRRs and RPs. During induction of local immune responses, systemic immune responses also become activated, which predispose plants to become more resistant to subsequent pathogen attacks. This review gives an update on recent findings that have enhanced our understanding of plant innate immunity and the arms race between plants and their pathogens. Received 24 June 2007; received after revision 18 July 2007; accepted 15 August 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号