首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   3篇
系统科学   3篇
教育与普及   1篇
理论与方法论   1篇
现状及发展   48篇
研究方法   52篇
综合类   136篇
自然研究   1篇
  2021年   2篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   30篇
  2011年   26篇
  2010年   10篇
  2009年   3篇
  2008年   20篇
  2007年   13篇
  2006年   28篇
  2005年   25篇
  2004年   18篇
  2003年   14篇
  2002年   9篇
  1999年   1篇
  1990年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
191.
The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family’s role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs’ expression is not well understood; however, let-7 microRNAs, β-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of ‘classical’ in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.  相似文献   
192.
During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 × 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 × 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 × 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 × 10(-3) for 6q22 and 1.2 × 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.  相似文献   
193.
194.
Pilocytic astrocytoma (PA) is the most common tumor of the pediatric central nervous system (CNS). A body of research over recent years has demonstrated a key role for mitogen-activated protein kinase (MAPK) pathway signaling in the development and behavior of PAs. Several mechanisms lead to activation of this pathway in PA, mostly in a mutually exclusive manner, with constitutive BRAF kinase activation subsequent to gene fusion being the most frequent. The high specificity of this fusion to PA when compared with other CNS tumors has diagnostic utility. In addition, the frequency of alteration of this key pathway provides an opportunity for molecularly targeted therapy in this tumor. Here, we review the current knowledge on mechanisms of MAPK activation in PA and some of the downstream consequences of this activation, which are now starting to be elucidated both in vitro and in vivo, as well as clinical considerations and possible future directions.  相似文献   
195.
196.
197.
Potassium channel mutations have been described in episodic neurological diseases. We report that K+ channel mutations cause disease phenotypes with neurodevelopmental and neurodegenerative features. In a Filipino adult-onset ataxia pedigree, the causative gene maps to 19q13, overlapping the SCA13 disease locus described in a French pedigree with childhood-onset ataxia and cognitive delay. This region contains KCNC3 (also known as Kv3.3), encoding a voltage-gated Shaw channel with enriched cerebellar expression. Sequencing revealed two missense mutations, both of which alter KCNC3 function in Xenopus laevis expression systems. KCNC3(R420H), located in the voltage-sensing domain, had no channel activity when expressed alone and had a dominant-negative effect when co-expressed with the wild-type channel. KCNC3(F448L) shifted the activation curve in the negative direction and slowed channel closing. Thus, KCNC3(R420H) and KCNC3(F448L) are expected to change the output characteristics of fast-spiking cerebellar neurons, in which KCNC channels confer capacity for high-frequency firing. Our results establish a role for KCNC3 in phenotypes ranging from developmental disorders to adult-onset neurodegeneration and suggest voltage-gated K+ channels as candidates for additional neurodegenerative diseases.  相似文献   
198.
We performed a genome-wide association study of 19,779 nonsynonymous SNPs in 735 individuals with Crohn disease and 368 controls. A total of 7,159 of these SNPs were informative. We followed up on all 72 SNPs with P 0.4), these data suggest that the underlying biological process may be specific to Crohn disease.  相似文献   
199.
With an overall prevalence of 10-20%, gallstone disease (cholelithiasis) represents one of the most frequent and economically relevant health problems of industrialized countries. We performed an association scan of >500,000 SNPs in 280 individuals with gallstones and 360 controls. A follow-up study of the 235 most significant SNPs in 1,105 affected individuals and 873 controls replicated the disease association of SNP A-1791411 in ABCG8 (allelic P value P(CCA) = 4.1 x 10(-9)), which was subsequently attributed to coding variant rs11887534 (D19H). Additional replication was achieved in 728 German (P = 2.8 x 10(-7)) and 167 Chilean subjects (P = 0.02). The overall odds ratio for D19H carriership was 2.2 (95% confidence interval: 1.8-2.6, P = 1.4 x 10(-14)) in the full German sample. Association was stronger in subjects with cholesterol gallstones (odds ratio = 3.3), suggesting that His19 might be associated with a more efficient transport of cholesterol into the bile.  相似文献   
200.
Proteolytic cleavage of the amyloid precursor protein (APP) by α-, β- and γ-secretases is a determining factor in Alzheimer’s disease (AD). Imbalances in the activity of all three enzymes can result in alterations towards pathogenic Aβ production. Proteolysis of APP is strongly linked to its subcellular localization as the secretases involved are distributed in different cellular compartments. APP has been shown to dimerize in cis-orientation, affecting Aβ production. This might be explained by different substrate properties defined by the APP oligomerization state or alternatively by altered APP monomer/dimer localization. We investigated the latter hypothesis using two different APP dimerization systems in HeLa cells. Dimerization caused a decreased localization of APP to the Golgi and at the plasma membrane, whereas the levels in the ER and in endosomes were increased. Furthermore, we observed via live cell imaging and biochemical analyses that APP dimerization affects its interaction with LRP1 and SorLA, suggesting that APP dimerization modulates its interplay with sorting molecules and in turn its localization and processing. Thus, pharmacological approaches targeting APP oligomerization properties might open novel strategies for treatment of AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号