首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1386篇
  免费   4篇
  国内免费   14篇
系统科学   108篇
丛书文集   2篇
教育与普及   10篇
理论与方法论   27篇
现状及发展   203篇
研究方法   191篇
综合类   751篇
自然研究   112篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   12篇
  2016年   7篇
  2015年   10篇
  2014年   10篇
  2013年   34篇
  2012年   106篇
  2011年   224篇
  2010年   37篇
  2009年   7篇
  2008年   95篇
  2007年   96篇
  2006年   85篇
  2005年   120篇
  2004年   109篇
  2003年   100篇
  2002年   93篇
  2001年   16篇
  2000年   14篇
  1999年   19篇
  1998年   13篇
  1997年   6篇
  1996年   7篇
  1995年   14篇
  1993年   5篇
  1992年   19篇
  1991年   7篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   3篇
  1986年   6篇
  1985年   10篇
  1984年   4篇
  1983年   5篇
  1982年   9篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1974年   5篇
  1972年   3篇
  1967年   2篇
  1966年   2篇
  1965年   3篇
  1958年   2篇
  1957年   4篇
  1956年   2篇
排序方式: 共有1404条查询结果,搜索用时 46 毫秒
861.
862.
863.
Jiang X  Clark RA  Liu L  Wagers AJ  Fuhlbrigge RC  Kupper TS 《Nature》2012,483(7388):227-231
Protective T-cell memory has long been thought to reside in blood and lymph nodes, but recently the concept of immune memory in peripheral tissues mediated by resident memory T (T(RM)) cells has been proposed. Here we show in mice that localized vaccinia virus (VACV) skin infection generates long-lived non-recirculating CD8(+) skin T(RM) cells that reside within the entire skin. These skin T(RM) cells are potent effector cells, and are superior to circulating central memory T (T(CM)) cells at providing rapid long-term protection against cutaneous re-infection. We find that CD8(+) T cells are rapidly recruited to skin after acute VACV infection. CD8(+) T-cell recruitment to skin is independent of CD4(+) T cells and interferon-γ, but requires the expression of E- and P-selectin ligands by CD8(+) T cells. Using parabiotic mice, we further show that circulating CD8(+) T(CM) and CD8(+) skin T(RM) cells are both generated after skin infection; however, CD8(+) T(CM) cells recirculate between blood and lymph nodes whereas T(RM) cells remain in the skin. Cutaneous CD8(+) T(RM) cells produce effector cytokines and persist for at least 6 months after infection. Mice with CD8(+) skin T(RM) cells rapidly cleared a subsequent re-infection with VACV whereas mice with circulating T(CM) but no skin T(RM) cells showed greatly impaired viral clearance, indicating that T(RM) cells provide superior protection. Finally, we show that T(RM) cells generated as a result of localized VACV skin infection reside not only in the site of infection, but also populate the entire skin surface and remain present for many months. Repeated re-infections lead to progressive accumulation of highly protective T(RM) cells in non-involved skin. These findings have important implications for our understanding of protective immune memory at epithelial interfaces with the environment, and suggest novel strategies for vaccines that protect against tissue tropic organisms.  相似文献   
864.
RB Decker  SM Krimigis  EC Roelof  ME Hill 《Nature》2012,489(7414):124-127
Over a two-year period, Voyager 1 observed a gradual slowing-down of radial plasma flow in the heliosheath to near-zero velocity after April 2010 at a distance of 113.5 astronomical units from the Sun (1 astronomical unit equals 1.5?×?10(8) kilometres). Voyager 1 was then about 20 astronomical units beyond the shock that terminates the free expansion of the solar wind and was immersed in the heated non-thermal plasma region called the heliosheath. The expectation from contemporary simulations was that the heliosheath plasma would be deflected from radial flow to meridional flow (in solar heliospheric coordinates), which at Voyager?1 would lie mainly on the (locally spherical) surface called the heliopause. This surface is supposed to separate the heliosheath plasma, which is of solar origin, from the interstellar plasma, which is of local Galactic origin. In 2011, the Voyager project began occasional temporary re-orientations of the spacecraft (totalling about 10-25 hours every 2 months) to re-align the Low-Energy Charged Particle instrument on board Voyager?1 so that it could measure meridional flow. Here we report that, contrary to expectations, these observations yielded a meridional flow velocity of +3?±?11?km?s(-1), that is, one consistent with zero within statistical uncertainties.  相似文献   
865.
866.
867.
Libby T  Moore TY  Chang-Siu E  Li D  Cohen DJ  Jusufi A  Full RJ 《Nature》2012,481(7380):181-184
In 1969, a palaeontologist proposed that theropod dinosaurs used their tails as dynamic stabilizers during rapid or irregular movements, contributing to their depiction as active and agile predators. Since then the inertia of swinging appendages has been implicated in stabilizing human walking, aiding acrobatic manoeuvres by primates and rodents, and enabling cats to balance on branches. Recent studies on geckos suggest that active tail stabilization occurs during climbing, righting and gliding. By contrast, studies on the effect of lizard tail loss show evidence of a decrease, an increase or no change in performance. Application of a control-theoretic framework could advance our general understanding of inertial appendage use in locomotion. Here we report that lizards control the swing of their tails in a measured manner to redirect angular momentum from their bodies to their tails, stabilizing body attitude in the sagittal plane. We video-recorded Red-Headed Agama lizards (Agama agama) leaping towards a vertical surface by first vaulting onto an obstacle with variable traction to induce a range of perturbations in body angular momentum. To examine a known controlled tail response, we built a lizard-sized robot with an active tail that used sensory feedback to stabilize pitch as it drove off a ramp. Our dynamics model revealed that a body swinging its tail experienced less rotation than a body with a rigid tail, a passively compliant tail or no tail. To compare a range of tails, we calculated tail effectiveness as the amount of tailless body rotation a tail could stabilize. A model Velociraptor mongoliensis supported the initial tail stabilization hypothesis, showing as it did a greater tail effectiveness than the Agama lizards. Leaping lizards show that inertial control of body attitude can advance our understanding of appendage evolution and provide biological inspiration for the next generation of manoeuvrable search-and-rescue robots.  相似文献   
868.
A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.  相似文献   
869.
Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.  相似文献   
870.
Novel mutations target distinct subgroups of medulloblastoma   总被引:1,自引:0,他引:1  
Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号