首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1134篇
  免费   6篇
  国内免费   8篇
系统科学   16篇
丛书文集   1篇
教育与普及   6篇
理论与方法论   16篇
现状及发展   119篇
研究方法   201篇
综合类   664篇
自然研究   125篇
  2021年   4篇
  2018年   3篇
  2017年   5篇
  2016年   10篇
  2015年   7篇
  2014年   15篇
  2013年   15篇
  2012年   94篇
  2011年   236篇
  2010年   39篇
  2009年   5篇
  2008年   92篇
  2007年   98篇
  2006年   96篇
  2005年   85篇
  2004年   92篇
  2003年   75篇
  2002年   78篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1978年   5篇
  1976年   3篇
  1973年   1篇
  1972年   5篇
  1971年   4篇
  1970年   5篇
  1969年   5篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1958年   1篇
  1948年   1篇
  1946年   2篇
排序方式: 共有1148条查询结果,搜索用时 296 毫秒
161.
162.
163.
The removal of apoptotic cells is essential for the physiological well being of the organism. In Caenorhabditis elegans, two conserved, partially redundant genetic pathways regulate this process. In the first pathway, the proteins CED-2, CED-5 and CED-12 (mammalian homologues CrkII, Dock180 and ELMO, respectively) function to activate CED-10 (Rac1). In the second group, the candidate receptor CED-1 (CD91/LRP/SREC) probably recognizes an unknown ligand on the apoptotic cell and signals via its cytoplasmic tail to the adaptor protein CED-6 (hCED-6/GULP), whereas CED-7 (ABCA1) is thought to play a role in membrane dynamics. Molecular understanding of how the second pathway promotes engulfment of the apoptotic cell is lacking. Here, we show that CED-1, CED-6 and CED-7 are required for actin reorganization around the apoptotic cell corpse, and that CED-1 and CED-6 colocalize with each other and with actin around the dead cell. Furthermore, we find that the CED-10(Rac) GTPase acts genetically downstream of these proteins to mediate corpse removal, functionally linking the two engulfment pathways and identifying the CED-1, -6 and -7 signalling module as upstream regulators of Rac activation.  相似文献   
164.
Greenwood RC  Franchi IA  Jambon A  Buchanan PC 《Nature》2005,435(7044):916-918
Immediately following the formation of the Solar System, small planetary bodies accreted, some of which melted to produce igneous rocks. Over a longer timescale (15-33 Myr), the inner planets grew by incorporation of these smaller objects through collisions. Processes operating on such asteroids strongly influenced the final composition of these planets, including Earth. Currently there is little agreement about the nature of asteroidal igneous activity: proposals range from small-scale melting, to near total fusion and the formation of deep magma oceans. Here we report a study of oxygen isotopes in two basaltic meteorite suites, the HEDs (howardites, eucrites and diogenites, which are thought to sample the asteroid 4 Vesta) and the angrites (from an unidentified asteroidal source). Our results demonstrate that these meteorite suites formed during early, global-scale melting (> or = 50 per cent) events. We show that magma oceans were present on all the differentiated Solar System bodies so far sampled. Magma oceans produced compositionally layered planetesimals; the modification of such bodies before incorporation into larger objects can explain some anomalous planetary features, such as Earth's high Mg/Si ratio.  相似文献   
165.
Turvey ST  Green OR  Holdaway RN 《Nature》2005,435(7044):940-943
Cyclical growth marks in cortical bone, deposited before attainment of adult body size, reflect osteogenetic changes caused by annual rhythms and are a general phenomenon in non-avian ectothermic and endothermic tetrapods. However, the growth periods of ornithurines (the theropod group including all modern birds) are usually apomorphically shortened to less than a year, so annual growth marks are almost unknown in this group. Here we show that cortical growth marks are frequent in long bones of New Zealand's moa (Aves: Dinornithiformes), a recently extinct ratite order. Moa showed the exaggerated K-selected life-history strategy formerly common in the New Zealand avifauna, and in some instances took almost a decade to attain skeletal maturity. This indicates that reproductive maturity in moa was extremely delayed relative to all extant birds. The two presently recognized moa families (Dinornithidae and Emeidae) also showed different postnatal growth rates, which were associated with their relative differences in body size. Both species of giant Dinornis moa attained their massive stature (up to 240 kg live mass) by accelerating their juvenile growth rate compared to the smaller emeid moa species, rather than by extending the skeletal growth period.  相似文献   
166.
Macrophages have a critical role in inflammatory and immune responses through their ability to recognize and engulf apoptotic cells. Here we show that macrophages initiate a cell-death programme in target cells by activating the canonical WNT pathway. We show in mice that macrophage WNT7b is a short-range paracrine signal required for WNT-pathway responses and programmed cell death in the vascular endothelial cells of the temporary hyaloid vessels of the developing eye. These findings indicate that macrophages can use WNT ligands to influence cell-fate decisions--including cell death--in adjacent cells, and raise the possibility that they do so in many different cellular contexts.  相似文献   
167.
Molecules capable of mimicking the function of a wide range of mechanical devices have been fabricated, with motors that can induce mechanical movement attracting particular attention. Such molecular motors convert light or chemical energy into directional rotary or linear motion, and are usually prepared and operated in solution. But if they are to be used as nanomachines that can do useful work, it seems essential to construct systems that can function on a surface, like a recently reported linear artificial muscle. Surface-mounted rotors have been realized and limited directionality in their motion predicted. Here we demonstrate that a light-driven molecular motor capable of repetitive unidirectional rotation can be mounted on the surface of gold nanoparticles. The motor design uses a chiral helical alkene with an upper half that serves as a propeller and is connected through a carbon-carbon double bond (the rotation axis) to a lower half that serves as a stator. The stator carries two thiol-functionalized 'legs', which then bind the entire motor molecule to a gold surface. NMR spectroscopy reveals that two photo-induced cis-trans isomerizations of the central double bond, each followed by a thermal helix inversion to prevent reverse rotation, induce a full and unidirectional 360 degrees rotation of the propeller with respect to the surface-mounted lower half of the system.  相似文献   
168.
Anxiety and fear are normal emotional responses to threatening situations. In human anxiety disorders--such as panic disorder, obsessive-compulsive disorder, post-traumatic stress disorder, social phobia, specific phobias and generalized anxiety disorder--these responses are exaggerated. The molecular mechanisms involved in the regulation of normal and pathological anxiety are mostly unknown. However, the availability of different inbred strains of mice offers an excellent model system in which to study the genetics of certain behavioural phenotypes. Here we report, using a combination of behavioural analysis of six inbred mouse strains with quantitative gene expression profiling of several brain regions, the identification of 17 genes with expression patterns that correlate with anxiety-like behavioural phenotypes. To determine if two of the genes, glyoxalase 1 and glutathione reductase 1, have a causal role in the genesis of anxiety, we performed genetic manipulation using lentivirus-mediated gene transfer. Local overexpression of these genes in the mouse brain resulted in increased anxiety-like behaviour, while local inhibition of glyoxalase 1 expression by RNA interference decreased the anxiety-like behaviour. Both of these genes are involved in oxidative stress metabolism, linking this pathway with anxiety-related behaviour.  相似文献   
169.
170.
Rohde RA  Muller RA 《Nature》2005,434(7030):208-210
It is well known that the diversity of life appears to fluctuate during the course of the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 million years ago). Here we show, using Sepkoski's compendium of the first and last stratigraphic appearances of 36,380 marine genera, a strong 62 +/- 3-million-year cycle, which is particularly evident in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance we also consider the contributions of environmental factors, and possible causes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号