首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   2篇
系统科学   1篇
现状及发展   20篇
研究方法   14篇
综合类   50篇
  2022年   2篇
  2018年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   9篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   20篇
  2004年   10篇
  2003年   7篇
  2002年   4篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
51.
The stress hormone-regulating hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the causality as well as the treatment of depression. To investigate a possible association between genes regulating the HPA axis and response to antidepressants and susceptibility for depression, we genotyped single-nucleotide polymorphisms in eight of these genes in depressed individuals and matched controls. We found significant associations of response to antidepressants and the recurrence of depressive episodes with single-nucleotide polymorphisms in FKBP5, a glucocorticoid receptor-regulating cochaperone of hsp-90, in two independent samples. These single-nucleotide polymorphisms were also associated with increased intracellular FKBP5 protein expression, which triggers adaptive changes in glucocorticoid receptor and, thereby, HPA-axis regulation. Individuals carrying the associated genotypes had less HPA-axis hyperactivity during the depressive episode. We propose that the FKBP5 variant-dependent alterations in HPA-axis regulation could be related to the faster response to antidepressant drug treatment and the increased recurrence of depressive episodes observed in this subgroup of depressed individuals. These findings support a central role of genes regulating the HPA axis in the causality of depression and the mechanism of action of antidepressant drugs.  相似文献   
52.
He W  Miao FJ  Lin DC  Schwandner RT  Wang Z  Gao J  Chen JL  Tian H  Ling L 《Nature》2004,429(6988):188-193
The citric acid cycle is central to the regulation of energy homeostasis and cell metabolism. Mutations in enzymes that catalyse steps in the citric acid cycle result in human diseases with various clinical presentations. The intermediates of the citric acid cycle are present at micromolar concentration in blood and are regulated by respiration, metabolism and renal reabsorption/extrusion. Here we show that GPR91 (ref. 3), a previously orphan G-protein-coupled receptor (GPCR), functions as a receptor for the citric acid cycle intermediate succinate. We also report that GPR99 (ref. 4), a close relative of GPR91, responds to alpha-ketoglutarate, another intermediate in the citric acid cycle. Thus by acting as ligands for GPCRs, succinate and alpha-ketoglutarate are found to have unexpected signalling functions beyond their traditional roles. Furthermore, we show that succinate increases blood pressure in animals. The succinate-induced hypertensive effect involves the renin-angiotensin system and is abolished in GPR91-deficient mice. Our results indicate a possible role for GPR91 in renovascular hypertension, a disease closely linked to atherosclerosis, diabetes and renal failure.  相似文献   
53.
Thoma R  Schulz-Gasch T  D'Arcy B  Benz J  Aebi J  Dehmlow H  Hennig M  Stihle M  Ruf A 《Nature》2004,432(7013):118-122
In higher organisms the formation of the steroid scaffold is catalysed exclusively by the membrane-bound oxidosqualene cyclase (OSC; lanosterol synthase). In a highly selective cyclization reaction OSC forms lanosterol with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. Valuable data on the mechanism of the complex cyclization cascade have been collected during the past 50 years using suicide inhibitors, mutagenesis studies and homology modelling. Nevertheless it is still not fully understood how the enzyme catalyses the reaction. Because of the decisive role of OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. Here we present two crystal structures of the human membrane protein OSC: the target protein with an inhibitor that showed cholesterol lowering in vivo opens the way for the structure-based design of new OSC inhibitors. The complex with the reaction product lanosterol gives a clear picture of the way in which the enzyme achieves product specificity in this highly exothermic cyclization reaction.  相似文献   
54.
目前,市场上出现越来越多的以电池为动力的电动汽车,其中大多数电动汽车必须通过有线充电装置进行充电。与之相对应的感应式无线充电系统,可以让充电过程更加舒适。无线充电系统一般由初级线圈和次级线圈组成,其中初级线圈可以建立在停车场,将电能转化为场能;次级线圈安装在车辆中,接收初级线圈能量并转化为电能,为车辆电池充电。为保证充电过程安全有效,初级线圈和次级线圈必须充分耦合,这可通过将车辆准确定位在初级线圈上方来实现。本文提出了一种简单而经济的方法来验证线圈之间的耦合是否足以满足充电条件。通过安装在次级线圈侧的电阻,来模拟在确定工作条件下无线充电系统的电池负载;电阻两端电压可以用来估计线圈之间的耦合度,以反映车辆与初级线圈的相对位置。本文在数学和物理原理的基础上解释了这个概念,并在一个真实的无线电传输线路上进行了试验评估。  相似文献   
55.
Polarized traffic in epithelial cells depends on well-organized pathways that direct secretory cargo to the apical or basolateral plasma membrane. In MDCK cells, apical trafficking can be further divided into a lipid raft-dependent and a raft-independent route, which separate biosynthetic cargo in a post-Golgi endosomal compartment. We have now identified KIF5C as a kinesin motor for apical trafficking of both raft-associated sucrase isomaltase and raft-independent neurotrophin receptor. KIF5C was identified by mass spectrometry in vesicle enriched fractions and on immunoisolated post-Golgi vesicles carrying apical cargo. The amount of vesicle-associated KIF5C was highest on material isolated directly after trans-Golgi network release and declined thereafter. Altogether, our data suggest that KIF5C is involved in the passage of apical cargo molecules to a post-Golgi endosomal compartment, where further segregation into distinct vesicle populations proceeds.  相似文献   
56.
Viruses must enter host cells to replicate, assemble and propagate. Because of the restricted size of their genomes, viruses have had to evolve efficient ways of exploiting host cell processes to promote their own life cycles and also to escape host immune defence mechanisms. Many viral open reading frames (viORFs) with immune-modulating functions essential for productive viral growth have been identified across a range of viral classes. However, there has been no comprehensive study to identify the host factors with which these viORFs interact for a global perspective of viral perturbation strategies. Here we show that different viral perturbation patterns of the host molecular defence network can be deduced from a mass-spectrometry-based host-factor survey in a defined human cellular system by using 70 innate immune-modulating viORFs from 30 viral species. The 579 host proteins targeted by the viORFs mapped to an unexpectedly large number of signalling pathways and cellular processes, suggesting yet unknown mechanisms of antiviral immunity. We further experimentally verified the targets heterogeneous nuclear ribonucleoprotein?U, phosphatidylinositol-3-OH kinase, the WNK (with-no-lysine) kinase family and USP19 (ubiquitin-specific peptidase 19) as vulnerable nodes in the host cellular defence system. Evaluation of the impact of viral immune modulators on the host molecular network revealed perturbation strategies used by individual viruses and by viral classes. Our data are also valuable for the design of broad and specific antiviral therapies.  相似文献   
57.
58.
59.
Posttranslational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is well studied in the nervous system and described as a dynamic modulator of plastic processes like precursor cell migration, axon fasciculation, and synaptic plasticity. Here, we describe a novel function of polysialylated NCAM (polySia-NCAM) in innate immunity of the lung. In mature lung tissue of healthy donors, polySia was exclusively attached to the transmembrane isoform NCAM-140 and located to intracellular compartments of epithelial cells. In patients with chronic obstructive pulmonary disease, however, increased polySia levels and processing of the NCAM carrier were observed. Processing of polysialylated NCAM was reproduced in a mouse model by bleomycin administration leading to an activation of the inflammasome and secretion of interleukin (IL)-1β. As shown in a cell culture model, polySia-NCAM-140 was kept in the late trans-Golgi apparatus of lung epithelial cells and stimulation by IL-1β or lipopolysaccharide induced metalloprotease-mediated ectodomain shedding, resulting in the secretion of soluble polySia-NCAM. Interestingly, polySia chains of secreted NCAM neutralized the cytotoxic activity of extracellular histones as well as DNA/histone-network-containing “neutrophil extracellular traps”, which are formed during invasion of microorganisms. Thus, shedding of polySia-NCAM by lung epithelial cells may provide a host-protective mechanism to reduce tissue damage during inflammatory processes.  相似文献   
60.
The control of fatty acid translocation across the mitochondrial membrane is mediated by the carnitine palmitoyltransferase (CPT) system. Modulation of its functionality has simultaneous effects on fatty acid and glucose metabolism. This encourages use of the CPT system as drug target for reduction of gluconeogenesis and restoration of lipid homeostasis, which are beneficial in the treatment of type 2 diabetes mellitus and obesity. Recently, crystal structures of CPT-2 were determined in uninhibited forms and in complexes with inhibitory substrate-analogs with anti-diabetic properties in animal models and in clinical studies. The CPT-2 crystal structures have advanced understanding of CPT structure–function relationships and will facilitate discovery of novel inhibitors by structure-based drug design. However, a number of unresolved questions regarding the biochemistry and pharmacology of CPT enzymes remain and are addressed in this review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号