首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
现状及发展   15篇
研究方法   5篇
综合类   39篇
自然研究   1篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2013年   1篇
  2012年   7篇
  2011年   14篇
  2010年   3篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   9篇
  2003年   2篇
  2002年   2篇
  1996年   1篇
  1979年   1篇
  1970年   1篇
排序方式: 共有60条查询结果,搜索用时 203 毫秒
11.
In 1981, David Hubel and Torsten Wiesel received the Nobel Prize for their research on cortical columns—vertical bands of neurons with similar functional properties. This success led to the view that “cortical column” refers to the basic building block of the mammalian neocortex. Since the 1990s, however, critics questioned this building block picture of “cortical column” and debated whether this concept is useless and should be replaced with successor concepts. This paper inquires which experimental results after 1981 challenged the building block picture and whether these challenges warrant the elimination “cortical column” from neuroscientific discourse. I argue that the proliferation of experimental techniques led to a patchwork of locally adapted uses of the column concept. Each use refers to a different kind of cortical structure, rather than a neocortical building block. Once we acknowledge this diverse-kinds picture of “cortical column”, the elimination of column concept becomes unnecessary. Rather, I suggest that “cortical column” has reached conceptual retirement: although it cannot be used to identify a neocortical building block, column research is still useful as a guide and cautionary tale for ongoing research. At the same time, neuroscientists should search for alternative concepts when studying the functional architecture of the neocortex. keywords: Cortical column, conceptual development, history of neuroscience, patchwork, eliminativism, conceptual retirement.  相似文献   
12.
13.
14.
Lange PF  Wartosch L  Jentsch TJ  Fuhrmann JC 《Nature》2006,440(7081):220-223
Mutations in ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, cause osteopetrosis and lysosomal storage disease in humans and mice. Severe osteopetrosis is also observed with mutations in the OSTM1 gene, which encodes a membrane protein of unknown function. Here we show that both ClC-7 and Ostm1 proteins co-localize in late endosomes and lysosomes of various tissues, as well as in the ruffled border of bone-resorbing osteoclasts. Co-immunoprecipitations show that ClC-7 and Ostm1 form a molecular complex and suggest that Ostm1 is a beta-subunit of ClC-7. ClC-7 is required for Ostm1 to reach lysosomes, where the highly glycosylated Ostm1 luminal domain is cleaved. Protein but not RNA levels of ClC-7 are greatly reduced in grey-lethal mice, which lack Ostm1, suggesting that the ClC-7-Ostm1 interaction is important for protein stability. As ClC-7 protein levels in Ostm1-deficient tissues and cells, including osteoclasts, are decreased below 10% of normal levels, Ostm1 mutations probably cause osteopetrosis by impairing the acidification of the osteoclast resorption lacuna, which depends on ClC-7 (ref. 3). The finding that grey-lethal mice, just like ClC-7-deficient mice, show lysosomal storage and neurodegeneration in addition to osteopetrosis implies a more general importance for ClC-7-Ostm1 complexes.  相似文献   
15.
16.
17.
18.
19.
A substantial percentage of human pregnancies are lost as spontaneous abortions after implantation. This is often caused by an inadequately developed placenta. Proper development of the placental vascular system is essential to nutrient and gas exchange between mother and developing embryo. Here we show that alpha(2)-adrenoceptors, which are activated by adrenaline and noradrenaline, are important regulators of placental structure and function. Mice with deletions in the genes encoding alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptors died between embryonic days 9.5 and 11.5 from a severe defect in yolk-sac and placenta development. In wildtype placentae, alpha(2)-adrenoceptors are abundantly expressed in giant cells, which secrete angiogenic factors to initiate development of the placental vascular labyrinth. In placentae deficient in alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptors, the density of fetal blood vessels in the labyrinth was markedly lower than normal, leading to death of the embryos as a result of reduced oxygen and nutrient supply. Basal phosphorylation of the extracellular signal regulated kinases ERK1 and ERK2 was also lower than normal, suggesting that activation of the mitogen-activated protein kinase (MAP kinase) pathway by alpha(2)-adrenoceptors is required for placenta and yolk-sac vascular development. Thus, alpha(2)-adrenoceptors are essential at the placental interface between mother and embryo to establish the circulatory system of the placenta and thus maintain pregnancy.  相似文献   
20.
Knigge C  Coe MJ  Podsiadlowski P 《Nature》2011,479(7373):372-375
Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core-collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct subpopulations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two subpopulations are most probably associated with the two distinct types of neutron-star-forming supernova, with electron-capture supernovae preferentially producing systems with short spin periods, short orbital periods and low eccentricities. Intriguingly, the split between the two subpopulations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号